{"title":"Sensorless monitoring of cutting forces and torques in machining using industrial edge device","authors":"Mohammadreza Chehrehzad , Mümin Irican , Ismail Lazoglu","doi":"10.1016/j.jmapro.2025.06.104","DOIUrl":null,"url":null,"abstract":"<div><div>Measuring cutting forces and torque during machining processes typically necessitates the use of specialized and often costly sensors, such as dynamometers. These sensors are designed to precisely capture the forces acting on the tool and workpiece during the cutting process, allowing for detailed analysis of the machining performance. The data obtained from such sensors is crucial for optimizing cutting parameters, improving tool life, and ensuring the quality of the machined surface. However, the high cost and complexity of these measurement systems can limit their widespread application, prompting interest in alternative methods or cost-effective solutions. This paper presents a novel method for sensorless online measurement of cutting forces and torques utilizing spindle current and torque data of an industrial Edge device. The milling forces and torques were initially measured with a dynamometer, while simultaneously, the spindle current and torque data were recorded using an industrial Edge device during the milling of titanium alloy Ti6Al4V. Statistical analysis of the data revealed strong correlations between the dynamometer readings and those obtained from the edge device. Validation of the method demonstrated that it achieves mean errors of less than 12 %. The proposed methodology offers a promising alternative for real-time, sensorless monitoring of cutting parameters, which could reduce the dependency on expensive sensors, minimize setup times, and enhance overall machining efficiency.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"150 ","pages":"Pages 981-1003"},"PeriodicalIF":6.1000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Processes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1526612525007649","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Measuring cutting forces and torque during machining processes typically necessitates the use of specialized and often costly sensors, such as dynamometers. These sensors are designed to precisely capture the forces acting on the tool and workpiece during the cutting process, allowing for detailed analysis of the machining performance. The data obtained from such sensors is crucial for optimizing cutting parameters, improving tool life, and ensuring the quality of the machined surface. However, the high cost and complexity of these measurement systems can limit their widespread application, prompting interest in alternative methods or cost-effective solutions. This paper presents a novel method for sensorless online measurement of cutting forces and torques utilizing spindle current and torque data of an industrial Edge device. The milling forces and torques were initially measured with a dynamometer, while simultaneously, the spindle current and torque data were recorded using an industrial Edge device during the milling of titanium alloy Ti6Al4V. Statistical analysis of the data revealed strong correlations between the dynamometer readings and those obtained from the edge device. Validation of the method demonstrated that it achieves mean errors of less than 12 %. The proposed methodology offers a promising alternative for real-time, sensorless monitoring of cutting parameters, which could reduce the dependency on expensive sensors, minimize setup times, and enhance overall machining efficiency.
期刊介绍:
The aim of the Journal of Manufacturing Processes (JMP) is to exchange current and future directions of manufacturing processes research, development and implementation, and to publish archival scholarly literature with a view to advancing state-of-the-art manufacturing processes and encouraging innovation for developing new and efficient processes. The journal will also publish from other research communities for rapid communication of innovative new concepts. Special-topic issues on emerging technologies and invited papers will also be published.