{"title":"An algorithm for peptide de novo sequencing from a group of SILAC labeled MS/MS spectra.","authors":"Fang Han, Kaizhong Zhang","doi":"10.1142/S0219720025500076","DOIUrl":null,"url":null,"abstract":"<p><p>Shotgun proteomics coupled with high-performance liquid chromatography and mass spectrometry has been instrumental in identifying proteins in complex mixtures. Effective computational approaches are required to automate the spectra interpretation process to handle the vast amount of data collected in a single Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) run. De novo sequencing from MS/MS has emerged as a vital technology for peptide sequencing in proteomics. To enhance the accuracy and practicality of de novo sequencing, previous algorithms have utilized multiple spectra to identify peptide sequences. Here, our study focuses on de novo sequencing of multiple tandem mass spectra of peptides with stable isotope labeling with amino acids in cell culture (SILAC) by incorporating different isotope-labeled amino acids into newly synthesized proteins. Multiple MS/MS spectra for the same peptide sequence are produced by the spectrometer after the SILAC samples undergo processing by LC-MS/MS shotgun proteomics. Taking into consideration the factors such as retention time and precursor ion mass, we aim to identify the peptide sequence with specific SILAC modifications and their locations. To do so, we propose de novo sequencing algorithms to compute the potential candidate peptide sequence by using similarity scores, followed by refinement algorithms to evaluate them. We also use real experimental data to test the algorithms.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":" ","pages":"2550007"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720025500076","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Shotgun proteomics coupled with high-performance liquid chromatography and mass spectrometry has been instrumental in identifying proteins in complex mixtures. Effective computational approaches are required to automate the spectra interpretation process to handle the vast amount of data collected in a single Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) run. De novo sequencing from MS/MS has emerged as a vital technology for peptide sequencing in proteomics. To enhance the accuracy and practicality of de novo sequencing, previous algorithms have utilized multiple spectra to identify peptide sequences. Here, our study focuses on de novo sequencing of multiple tandem mass spectra of peptides with stable isotope labeling with amino acids in cell culture (SILAC) by incorporating different isotope-labeled amino acids into newly synthesized proteins. Multiple MS/MS spectra for the same peptide sequence are produced by the spectrometer after the SILAC samples undergo processing by LC-MS/MS shotgun proteomics. Taking into consideration the factors such as retention time and precursor ion mass, we aim to identify the peptide sequence with specific SILAC modifications and their locations. To do so, we propose de novo sequencing algorithms to compute the potential candidate peptide sequence by using similarity scores, followed by refinement algorithms to evaluate them. We also use real experimental data to test the algorithms.
期刊介绍:
The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information.
The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.