{"title":"Inhibition of tumor growth using A conjugated nanobody that specifically targets c-MYC.","authors":"Yuanyuan Xue, Hao Jiang, Ting Li, Xiaolin Tian, Zelong Miao, Zhaoyun Zong, Wenxi Ding, Yali Wei, Haiteng Deng","doi":"10.1038/s41388-025-03486-x","DOIUrl":null,"url":null,"abstract":"<p><p>The MYC oncogene is a frequently activated oncogene in human cancers, and its high expression is strongly correlated with a poor prognosis. The lack of conventional enzyme-binding sites in MYC poses significant challenges for the development of small-molecule-based therapies to treat MYC-deregulated cancer. In particular, only one transmembrane peptide that targets c-MYC has advanced to early clinical trials, thus highlighting the need of effective and direct approaches for targeting c-MYC in cancer treatment. In this study, we developed a conjugated nanobody (NB) that specifically targets MYC, termed a cell-permeable MYC-targeting nanobody (CPMycNB), via sortase-mediated protein ligation. CPMycNB effectively entered the nucleus and bound to c-MYC, thereby disrupting the c-MYC-MAX interaction. This disruption resulted in the downregulation of c-MYC-targeted genes, activation of apoptotic pathways, and inhibition of cell growth and proliferation in c-MYC-driven tumor cells. Using hydrogen-deuterium exchange mass spectrometry, we found that CPMycNB interacted with the leucine zipper domain of c-MYC. Furthermore, xenograft studies confirmed the therapeutic efficacy of CPMycNB, which significantly reduced tumor size and weight. Our findings highlight the potential of CPMycNB for the treatment of c-MYC-associated malignancies.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41388-025-03486-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The MYC oncogene is a frequently activated oncogene in human cancers, and its high expression is strongly correlated with a poor prognosis. The lack of conventional enzyme-binding sites in MYC poses significant challenges for the development of small-molecule-based therapies to treat MYC-deregulated cancer. In particular, only one transmembrane peptide that targets c-MYC has advanced to early clinical trials, thus highlighting the need of effective and direct approaches for targeting c-MYC in cancer treatment. In this study, we developed a conjugated nanobody (NB) that specifically targets MYC, termed a cell-permeable MYC-targeting nanobody (CPMycNB), via sortase-mediated protein ligation. CPMycNB effectively entered the nucleus and bound to c-MYC, thereby disrupting the c-MYC-MAX interaction. This disruption resulted in the downregulation of c-MYC-targeted genes, activation of apoptotic pathways, and inhibition of cell growth and proliferation in c-MYC-driven tumor cells. Using hydrogen-deuterium exchange mass spectrometry, we found that CPMycNB interacted with the leucine zipper domain of c-MYC. Furthermore, xenograft studies confirmed the therapeutic efficacy of CPMycNB, which significantly reduced tumor size and weight. Our findings highlight the potential of CPMycNB for the treatment of c-MYC-associated malignancies.
期刊介绍:
Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge.
Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.