Huan Yin, Huan Cao, Jianwang Yang, Tao Liu, Qi Li, Mengxiao Liu, Baoshan Wang
{"title":"FGF13 prevents age-related hearing loss by protecting spiral ganglion neurons and ribbon synapses from injury.","authors":"Huan Yin, Huan Cao, Jianwang Yang, Tao Liu, Qi Li, Mengxiao Liu, Baoshan Wang","doi":"10.1038/s41420-025-02607-5","DOIUrl":null,"url":null,"abstract":"<p><p>Age-related hearing loss (ARHL) is the most common sensorineural hearing loss, and the dysfunction of spiral ganglion neurons (SGNs) and ribbon synapses plays a crucial role in the pathogenesis. The fibroblast growth factor 13 (FGF13) is considered to be associated with neuronal survival and synaptic transmission. However, whether FGF13 is involved in degeneration of SGNs and ribbon synapses, the typical changes of ARHL, is still unknown. Firstly, the expression of FGF13 mRNA and protein, was all dramatically decreased in the SGNs of aged mice, accompanied by impaired SGNs and ribbon synapses. More importantly, specific upregulation of FGF13 in SGNs significantly reduced hearing threshold, improved wave I amplitude, and alleviated loss of SGNs as well as ribbon synapses. Furthermore, the proteomic analysis and verification results suggested that the decrease of FGF13 induced the loss of SGNs and ribbon synapses partly by regulating the ORC1. Taken together, our data revealed that FGF13 might protect SGNs and ribbon synapses by regulating the expression of ORC1, which could provide a new idea and targets for the prevention and treatment of ARHL.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"307"},"PeriodicalIF":6.1000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12228769/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02607-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Age-related hearing loss (ARHL) is the most common sensorineural hearing loss, and the dysfunction of spiral ganglion neurons (SGNs) and ribbon synapses plays a crucial role in the pathogenesis. The fibroblast growth factor 13 (FGF13) is considered to be associated with neuronal survival and synaptic transmission. However, whether FGF13 is involved in degeneration of SGNs and ribbon synapses, the typical changes of ARHL, is still unknown. Firstly, the expression of FGF13 mRNA and protein, was all dramatically decreased in the SGNs of aged mice, accompanied by impaired SGNs and ribbon synapses. More importantly, specific upregulation of FGF13 in SGNs significantly reduced hearing threshold, improved wave I amplitude, and alleviated loss of SGNs as well as ribbon synapses. Furthermore, the proteomic analysis and verification results suggested that the decrease of FGF13 induced the loss of SGNs and ribbon synapses partly by regulating the ORC1. Taken together, our data revealed that FGF13 might protect SGNs and ribbon synapses by regulating the expression of ORC1, which could provide a new idea and targets for the prevention and treatment of ARHL.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.