Ke Deng , Nora Pällmann , Marte Livgård , Wanja Kildal , Manohar Pradhan , Ladan Fazli , Paul S. Rennie , Yang Jin , Fahri Saatcioglu , Omer F. Kuzu
{"title":"Endoplasmic reticulum stress-driven nucleotide catabolism fuels prostate cancer","authors":"Ke Deng , Nora Pällmann , Marte Livgård , Wanja Kildal , Manohar Pradhan , Ladan Fazli , Paul S. Rennie , Yang Jin , Fahri Saatcioglu , Omer F. Kuzu","doi":"10.1016/j.canlet.2025.217888","DOIUrl":null,"url":null,"abstract":"<div><div>Endoplasmic reticulum (ER) stress is a critical regulator of cancer cell metabolism and survival. In this study, we elucidate the coordinated roles of two key ER stress mediators, Activating Transcription Factor 4 (ATF4) and X-box Binding Protein 1 spliced (XBP1s), in regulating purine homeostasis in prostate cancer (PCa) cells. We demonstrate that ATF4 directly upregulates Molybdenum Cofactor Sulfurase (<em>MOCOS</em>), a key enzyme in purine catabolism, while XBP1s induces the expression of xanthine dehydrogenase (<em>XDH</em>), the principal MOCOS target in this pathway. Knockdown of MOCOS significantly impairs PCa cell proliferation as well as prostatosphere and colony formation in vitro, and inhibits tumor growth in preclinical mouse models of PCa. Mechanistically, MOCOS suppression leads to purine accumulation, disrupts pyrimidine synthesis, and causes nucleotide imbalance, resulting in replication fork stalling. This imbalance is also accompanied by a compromised glutathione-mediated antioxidant response, rendering the cells more susceptible to DNA damage. Importantly, targeting XDH, either genetically or biochemically, also significantly hinders PCa cell growth. Collectively, our data highlight the pivotal role of ER stress-mediated purine homeostasis in sustaining PCa cell growth.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"630 ","pages":"Article 217888"},"PeriodicalIF":10.1000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383525004562","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Endoplasmic reticulum (ER) stress is a critical regulator of cancer cell metabolism and survival. In this study, we elucidate the coordinated roles of two key ER stress mediators, Activating Transcription Factor 4 (ATF4) and X-box Binding Protein 1 spliced (XBP1s), in regulating purine homeostasis in prostate cancer (PCa) cells. We demonstrate that ATF4 directly upregulates Molybdenum Cofactor Sulfurase (MOCOS), a key enzyme in purine catabolism, while XBP1s induces the expression of xanthine dehydrogenase (XDH), the principal MOCOS target in this pathway. Knockdown of MOCOS significantly impairs PCa cell proliferation as well as prostatosphere and colony formation in vitro, and inhibits tumor growth in preclinical mouse models of PCa. Mechanistically, MOCOS suppression leads to purine accumulation, disrupts pyrimidine synthesis, and causes nucleotide imbalance, resulting in replication fork stalling. This imbalance is also accompanied by a compromised glutathione-mediated antioxidant response, rendering the cells more susceptible to DNA damage. Importantly, targeting XDH, either genetically or biochemically, also significantly hinders PCa cell growth. Collectively, our data highlight the pivotal role of ER stress-mediated purine homeostasis in sustaining PCa cell growth.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.