Aleksandr Ianevski, María Cámara-Quílez, Wei Wang, Rajikala Suganthan, Gunn Hildrestrand, Jonas Viken Grini, Dagny Sanden Døskeland, Jing Ye, Magnar Bjørås
{"title":"Early transcriptional responses reveal cell type-specific vulnerability and neuroprotective mechanisms in the neonatal ischemic hippocampus.","authors":"Aleksandr Ianevski, María Cámara-Quílez, Wei Wang, Rajikala Suganthan, Gunn Hildrestrand, Jonas Viken Grini, Dagny Sanden Døskeland, Jing Ye, Magnar Bjørås","doi":"10.1186/s40478-025-02062-4","DOIUrl":null,"url":null,"abstract":"<p><p>Neonatal hypoxic-ischemic (H-I) brain injury, a leading cause of neurodevelopmental disabilities, severely affects the metabolically active and neurogenic hippocampus. To investigate its acute effects and identify drug targets for early therapeutic windows, we applied single-nucleus RNA sequencing on postnatal day 8 (P8) mouse hippocampi under sham, hypoxic, and hypoxic-ischemic conditions. We constructed a comprehensive hippocampal cell atlas and developed a machine-learning classifier for precise cell type identification. Our analysis reveals early vulnerabilities in mature neurons and notable resilience in immature DG, GABAergic, and Cajal-Retzius cells following H-I. Gene regulatory network analysis identified key transcription factors associated with neuronal vulnerability, along with upregulated ribosome biogenesis and dysregulated calcium homeostasis pathways. We observed rapid activation of astrocytes and microglia, with Runx1 identified as a potential key transcription factor associated with early microglia immune responses. Endothelial cells displayed complex transcriptional changes and predicted intercellular signaling patterns that may influence vascular repair and recovery. Our study advances the understanding of immediate cellular and transcriptional responses to neonatal H-I injury, providing new insights into hippocampal cell heterogeneity and pathophysiology. The integrated hippocampal atlas, post-H-I atlas, and machine learning classifier are available at https://hippo-seq.org .</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"13 1","pages":"147"},"PeriodicalIF":6.2000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12228329/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40478-025-02062-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Neonatal hypoxic-ischemic (H-I) brain injury, a leading cause of neurodevelopmental disabilities, severely affects the metabolically active and neurogenic hippocampus. To investigate its acute effects and identify drug targets for early therapeutic windows, we applied single-nucleus RNA sequencing on postnatal day 8 (P8) mouse hippocampi under sham, hypoxic, and hypoxic-ischemic conditions. We constructed a comprehensive hippocampal cell atlas and developed a machine-learning classifier for precise cell type identification. Our analysis reveals early vulnerabilities in mature neurons and notable resilience in immature DG, GABAergic, and Cajal-Retzius cells following H-I. Gene regulatory network analysis identified key transcription factors associated with neuronal vulnerability, along with upregulated ribosome biogenesis and dysregulated calcium homeostasis pathways. We observed rapid activation of astrocytes and microglia, with Runx1 identified as a potential key transcription factor associated with early microglia immune responses. Endothelial cells displayed complex transcriptional changes and predicted intercellular signaling patterns that may influence vascular repair and recovery. Our study advances the understanding of immediate cellular and transcriptional responses to neonatal H-I injury, providing new insights into hippocampal cell heterogeneity and pathophysiology. The integrated hippocampal atlas, post-H-I atlas, and machine learning classifier are available at https://hippo-seq.org .
期刊介绍:
"Acta Neuropathologica Communications (ANC)" is a peer-reviewed journal that specializes in the rapid publication of research articles focused on the mechanisms underlying neurological diseases. The journal emphasizes the use of molecular, cellular, and morphological techniques applied to experimental or human tissues to investigate the pathogenesis of neurological disorders.
ANC is committed to a fast-track publication process, aiming to publish accepted manuscripts within two months of submission. This expedited timeline is designed to ensure that the latest findings in neuroscience and pathology are disseminated quickly to the scientific community, fostering rapid advancements in the field of neurology and neuroscience. The journal's focus on cutting-edge research and its swift publication schedule make it a valuable resource for researchers, clinicians, and other professionals interested in the study and treatment of neurological conditions.