A Surface Plasmon Resonance‐Based Integrated Assay for Quantification and Glycosylation Characterization of Monoclonal Antibodies in Crude Heterogeneous Samples
IF 3.6 2区 生物学Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Ilona Metayer, Catherine Forest‐Nault, Julie Guimond, Simon Joubert, Olivier Henry, Yves Durocher, Gregory De Crescenzo, Jimmy Gaudreault
{"title":"A Surface Plasmon Resonance‐Based Integrated Assay for Quantification and Glycosylation Characterization of Monoclonal Antibodies in Crude Heterogeneous Samples","authors":"Ilona Metayer, Catherine Forest‐Nault, Julie Guimond, Simon Joubert, Olivier Henry, Yves Durocher, Gregory De Crescenzo, Jimmy Gaudreault","doi":"10.1002/bit.70016","DOIUrl":null,"url":null,"abstract":"The rise in cancer, autoimmune, inflammatory, and infectious diseases in recent decades has led to a surge in the development of monoclonal antibodies (mAbs) therapies, now the most widely used family of biologics. To meet the growing global demand, biopharmaceutical industries are intensifying their production processes. One approach to achieve more efficient production of effective mAbs is to develop tools for real‐time quality monitoring. Specifically, the glycosylation profile of mAbs must be closely monitored, since it greatly impacts their therapeutic efficacy and innocuity, making it a critical quality attribute. In this study, we developed a surface plasmon resonance‐based integrated assay allowing for the simultaneous quantification and glycosylation characterization of mAbs in crude samples, hence permitting the at‐line analysis of bioreactor cell cultures. Thanks to the high specificity of the interaction between biosensor surface‐bound protein A and the Fc region of mAbs, we quantified crude IgG samples under mass transport limitations. Next, by flowing running buffer on the surface, impurities contained in the mAbs samples were washed away from the biosensor surface, allowing subsequent recording of the kinetics between the captured mAbs and injected FcγRII receptors. Of interest, with this strategy, we were able to quantify terminal galactosylation and core fucosylation of IgG lots, two important glycan modifications for mAb efficacy.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"48 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.70016","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The rise in cancer, autoimmune, inflammatory, and infectious diseases in recent decades has led to a surge in the development of monoclonal antibodies (mAbs) therapies, now the most widely used family of biologics. To meet the growing global demand, biopharmaceutical industries are intensifying their production processes. One approach to achieve more efficient production of effective mAbs is to develop tools for real‐time quality monitoring. Specifically, the glycosylation profile of mAbs must be closely monitored, since it greatly impacts their therapeutic efficacy and innocuity, making it a critical quality attribute. In this study, we developed a surface plasmon resonance‐based integrated assay allowing for the simultaneous quantification and glycosylation characterization of mAbs in crude samples, hence permitting the at‐line analysis of bioreactor cell cultures. Thanks to the high specificity of the interaction between biosensor surface‐bound protein A and the Fc region of mAbs, we quantified crude IgG samples under mass transport limitations. Next, by flowing running buffer on the surface, impurities contained in the mAbs samples were washed away from the biosensor surface, allowing subsequent recording of the kinetics between the captured mAbs and injected FcγRII receptors. Of interest, with this strategy, we were able to quantify terminal galactosylation and core fucosylation of IgG lots, two important glycan modifications for mAb efficacy.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.