DFT‐Guided Design of Hydroxytyrosol‐Encapsulated Nanocages: Comparative Insights into Boron Nitride Versus Carbon Fullerenes for Targeted Drug Delivery and Therapeutic Applications

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
A. Khosravi, Mohammad T. Baei, S. Zahra Sayyed‐Alangi, E. Tazikeh Lemeski
{"title":"DFT‐Guided Design of Hydroxytyrosol‐Encapsulated Nanocages: Comparative Insights into Boron Nitride Versus Carbon Fullerenes for Targeted Drug Delivery and Therapeutic Applications","authors":"A. Khosravi, Mohammad T. Baei, S. Zahra Sayyed‐Alangi, E. Tazikeh Lemeski","doi":"10.1002/adts.202500582","DOIUrl":null,"url":null,"abstract":"Hydroxytyrosol (HT), a bioactive compound in olive oil, has therapeutic potential but is limited by low bioavailability and instability. This study explores fullerene‐like nanocages (B₁₂N₁₂, B₁₆N₁₆, C₂₄, C₃₂) as nanocarriers to enhance HT delivery. Using DFT, QTAIM, and molecular docking, interactions between HT and nanocages are analyzed. Boron nitride nanocages, particularly B₁₂N₁₂, show the strongest binding (Eads = −25.28 kcal mol<jats:sup>−1</jats:sup> in water) via Lewis acid‐base interactions, improving stability (ΔG = −11.90 kcal mol<jats:sup>−1</jats:sup>) and solubility. Carbon cages (C₂₄, C₃₂) exhibit weaker van der Waals interactions (Eads = −7.42 to −10.24 kcal mol<jats:sup>−1</jats:sup>), favoring controlled release. Electronic analyses reveal altered HT reactivity upon complexation. QTAIM confirms partially covalent B─O bonds in (BN)<jats:sub>n = 12, 16</jats:sub>‐HT systems, while carbon cages rely on dispersive forces. UV–vis spectra show redshifted peaks for BN‐HT complexes, indicating enhanced delocalization. Molecular docking demonstrates improved therapeutic effects of HT‐nanocage complexes. For instance, C₂₄‐HT strongly bound to COVID‐19 protease (E<jats:sub>Dc</jats:sub> = −3.86 kcal mol<jats:sup>−1</jats:sup>) and HER2 kinase (E<jats:sub>Dc</jats:sub> = −3.99 kcal mol<jats:sup>−1</jats:sup>), enhancing antiviral and anticancer activity. Similarly, B₁₆N₁₆‐HT effectively targets TNF‐α (E<jats:sub>Dc</jats:sub> = −3.70 kcal mol<jats:sup>−1</jats:sup>), showing superior anti‐inflammatory effects. These findings highlight nanocarriers' potential to overcome HT's limitations, enabling advanced biomedical applications.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"48 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202500582","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Hydroxytyrosol (HT), a bioactive compound in olive oil, has therapeutic potential but is limited by low bioavailability and instability. This study explores fullerene‐like nanocages (B₁₂N₁₂, B₁₆N₁₆, C₂₄, C₃₂) as nanocarriers to enhance HT delivery. Using DFT, QTAIM, and molecular docking, interactions between HT and nanocages are analyzed. Boron nitride nanocages, particularly B₁₂N₁₂, show the strongest binding (Eads = −25.28 kcal mol−1 in water) via Lewis acid‐base interactions, improving stability (ΔG = −11.90 kcal mol−1) and solubility. Carbon cages (C₂₄, C₃₂) exhibit weaker van der Waals interactions (Eads = −7.42 to −10.24 kcal mol−1), favoring controlled release. Electronic analyses reveal altered HT reactivity upon complexation. QTAIM confirms partially covalent B─O bonds in (BN)n = 12, 16‐HT systems, while carbon cages rely on dispersive forces. UV–vis spectra show redshifted peaks for BN‐HT complexes, indicating enhanced delocalization. Molecular docking demonstrates improved therapeutic effects of HT‐nanocage complexes. For instance, C₂₄‐HT strongly bound to COVID‐19 protease (EDc = −3.86 kcal mol−1) and HER2 kinase (EDc = −3.99 kcal mol−1), enhancing antiviral and anticancer activity. Similarly, B₁₆N₁₆‐HT effectively targets TNF‐α (EDc = −3.70 kcal mol−1), showing superior anti‐inflammatory effects. These findings highlight nanocarriers' potential to overcome HT's limitations, enabling advanced biomedical applications.
DFT引导下羟基酪醇包封纳米笼的设计:氮化硼与碳富勒烯在靶向药物传递和治疗应用中的比较见解
羟基酪醇(HT)是橄榄油中的一种生物活性化合物,具有治疗潜力,但受低生物利用度和不稳定性的限制。本研究探索了类似富勒烯的纳米笼(B₁₂N₁₂,B₁₆N₁₆,C₂₄,C₃₂)作为纳米载体来增强高温输送。利用DFT、QTAIM和分子对接,分析了HT与纳米笼之间的相互作用。氮化硼纳米笼,特别是B₁₂N₁₂,通过路易斯酸碱相互作用表现出最强的结合(Eads = - 25.28 kcal mol - 1),提高了稳定性(ΔG = - 11.90 kcal mol - 1)和溶解度。碳笼(C₂₄,C₃₂)表现出较弱的范德瓦尔斯相互作用(Eads =−7.42至−10.24 kcal mol−1),有利于控制释放。电子分析显示络合后HT反应性改变。QTAIM证实了(BN)n = 12,16 - HT体系中部分共价的B─O键,而碳笼依赖于色散力。紫外可见光谱显示BN - HT配合物的红移峰,表明离域增强。分子对接证明了HT -纳米笼复合物改善的治疗效果。例如,C₂₄‐HT与COVID‐19蛋白酶(EDc =−3.86 kcal mol−1)和HER2激酶(EDc =−3.99 kcal mol−1)紧密结合,增强了抗病毒和抗癌活性。同样,B₁₆- N₁₆- HT有效靶向TNF - α (EDc = - 3.70 kcal mol - 1),具有良好的抗炎作用。这些发现突出了纳米载体克服高温疗法局限性的潜力,使先进的生物医学应用成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信