Finite element approximation of penalized elastoplastic torsion problem with nonconstant source term

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Franz Chouly, Tom Gustafsson, Patrick Hild
{"title":"Finite element approximation of penalized elastoplastic torsion problem with nonconstant source term","authors":"Franz Chouly, Tom Gustafsson, Patrick Hild","doi":"10.1093/imanum/draf052","DOIUrl":null,"url":null,"abstract":"This study is concerned with the finite element approximation of the elastoplastic torsion problem. We focus on the case of a nonconstant source term, which cannot be easily recast into an obstacle problem as can be done in the case of a constant source term. We present a simple formulation that penalizes the constraint directly on the gradient norm of the solution. We study its well-posedness, derive error estimates and present numerical results to illustrate the theory.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"29 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf052","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study is concerned with the finite element approximation of the elastoplastic torsion problem. We focus on the case of a nonconstant source term, which cannot be easily recast into an obstacle problem as can be done in the case of a constant source term. We present a simple formulation that penalizes the constraint directly on the gradient norm of the solution. We study its well-posedness, derive error estimates and present numerical results to illustrate the theory.
非常源项惩罚弹塑性扭转问题的有限元逼近
本文研究了弹塑性扭转问题的有限元逼近问题。我们将重点放在非恒定源项的情况下,它不能像在恒定源项的情况下那样容易地转化为障碍问题。我们提出了一个简单的公式,直接对解的梯度范数的约束进行惩罚。我们研究了它的适定性,推导了误差估计,并给出了数值结果来说明这一理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信