Rapid Salient Object Detection With Difference Convolutional Neural Networks.

Zhuo Su, Li Liu, Matthias Muller, Jiehua Zhang, Diana Wofk, Ming-Ming Cheng, Matti Pietikainen
{"title":"Rapid Salient Object Detection With Difference Convolutional Neural Networks.","authors":"Zhuo Su, Li Liu, Matthias Muller, Jiehua Zhang, Diana Wofk, Ming-Ming Cheng, Matti Pietikainen","doi":"10.1109/TPAMI.2025.3583968","DOIUrl":null,"url":null,"abstract":"<p><p>This paper addresses the challenge of deploying salient object detection (SOD) on resource-constrained devices with real-time performance. While recent advances in deep neural networks have improved SOD, existing top-leading models are computationally expensive. We propose an efficient network design that combines traditional wisdom on SOD and the representation power of modern CNNs. Like biologically-inspired classical SOD methods relying on computing contrast cues to determine saliency of image regions, our model leverages Pixel Difference Convolutions (PDCs) to encode the feature contrasts. Differently, PDCs are incorporated in a CNN architecture so that the valuable contrast cues are extracted from rich feature maps. For efficiency, we introduce a difference convolution reparameterization (DCR) strategy that embeds PDCs into standard convolutions, eliminating computation and parameters at inference. Additionally, we introduce SpatioTemporal Difference Convolution (STDC) for video SOD, enhancing the standard 3D convolution with spatiotemporal contrast capture. Our models, SDNet for image SOD and STDNet for video SOD, achieve significant improvements in efficiency-accuracy trade-offs. On a Jetson Orin device, our models with $\\lt $ 1M parameters operate at 46 FPS and 150 FPS on streamed images and videos, surpassing the second-best lightweight models in our experiments by more than $2\\times$ and $3\\times$ in speed with superior accuracy.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2025.3583968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the challenge of deploying salient object detection (SOD) on resource-constrained devices with real-time performance. While recent advances in deep neural networks have improved SOD, existing top-leading models are computationally expensive. We propose an efficient network design that combines traditional wisdom on SOD and the representation power of modern CNNs. Like biologically-inspired classical SOD methods relying on computing contrast cues to determine saliency of image regions, our model leverages Pixel Difference Convolutions (PDCs) to encode the feature contrasts. Differently, PDCs are incorporated in a CNN architecture so that the valuable contrast cues are extracted from rich feature maps. For efficiency, we introduce a difference convolution reparameterization (DCR) strategy that embeds PDCs into standard convolutions, eliminating computation and parameters at inference. Additionally, we introduce SpatioTemporal Difference Convolution (STDC) for video SOD, enhancing the standard 3D convolution with spatiotemporal contrast capture. Our models, SDNet for image SOD and STDNet for video SOD, achieve significant improvements in efficiency-accuracy trade-offs. On a Jetson Orin device, our models with $\lt $ 1M parameters operate at 46 FPS and 150 FPS on streamed images and videos, surpassing the second-best lightweight models in our experiments by more than $2\times$ and $3\times$ in speed with superior accuracy.

差分卷积神经网络快速显著目标检测。
本文解决了在具有实时性能的资源受限设备上部署显著目标检测(SOD)的挑战。虽然深度神经网络的最新进展已经改善了SOD,但现有的顶级模型在计算上是昂贵的。我们提出了一种高效的网络设计,将SOD的传统智慧与现代cnn的表示能力相结合。与受生物学启发的经典SOD方法依赖于计算对比度线索来确定图像区域的显著性一样,我们的模型利用像素差分卷积(PDCs)对特征对比度进行编码。不同的是,PDCs被整合到CNN架构中,以便从丰富的特征图中提取有价值的对比线索。为了提高效率,我们引入了一种差分卷积重参数化(DCR)策略,该策略将PDCs嵌入到标准卷积中,从而消除了推理时的计算和参数。此外,我们引入了用于视频SOD的时空差分卷积(STDC),通过时空对比捕获增强了标准的3D卷积。我们的模型,用于图像SOD的SDNet和用于视频SOD的STDNet,在效率和精度的权衡方面取得了显著的改进。在Jetson Orin设备上,我们的模型具有$\lt $ 100万参数,在流图像和视频上以46帧/秒和150帧/秒的速度运行,在我们的实验中超过第二好的轻量级模型,速度超过$2\倍$和$3\倍$,具有卓越的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信