{"title":"Adipocytes-induced ANGPTL4/KLF4 axis drives glycolysis and metastasis in triple-negative breast cancer.","authors":"Dou Yin, Nana Fang, Yaling Zhu, Xiaoqing Bao, Juan Yang, Qingyu Zhang, Ruimeng Wang, Jiahui Huang, Qibing Wu, Fang Ma, Xiaohui Wei","doi":"10.1186/s13046-025-03458-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The adipocyte-rich tumor microenvironment (TME) is recognized as a key factor in promoting cancer progression. A distinct characteristic of peritumoral adipocytes is their reduced lipid content and the acquisition of a proinflammatory phenotype. However, the underlying mechanisms by which adipocytes rewire metabolism and boost tumor progression in triple-negative breast cancer (TNBC) remain poorly understood.</p><p><strong>Methods: </strong>We utilized transcriptomic analysis, bioinformatic analysis, metabolic flux analysis, protein-protein docking, gene and protein expression profiling, in vivo metastasis analysis and breast cancer specimens to explore how adipocytes reprogram tumor metabolism and progression in TNBC.</p><p><strong>Results: </strong>Our findings reveal that Angiopoietin-like 4 (ANGPTL4) exhibits significantly higher expression levels in adipocyte-rich tumor circumstance compared to the symbiotic environment lacking of adipocyte. Furthermore, ANGPTL4 expression in tumor cells is essential for adipocyte-driven glycolysis and metastasis. Interleukin 6 (IL-6), enriched in cancer-associated adipocytes, and lipolysis-derived free fatty acids (FFAs) released from adipocytes, amplify ANGPTL4-mediated glycolysis and metastasis through activation of STAT3 and PPARα pathways in TNBC cells. Additionally, ANGPTL4 interacts with transcription factor KLF4 and enhances KLF4 activity, which further drives glycolysis and metastasis, whereas KLF4 knockdown attenuates migration and glycolysis in TNBC cells. Importantly, Elevated ANGPTL4 and KLF4 expression was observed in metastatic breast cancer specimens compared to non-metastatic cases and was positively correlated with poor prognosis.</p><p><strong>Conclusion: </strong>Collectively, our results uncover a complex metabolic interaction between adipocytes and TNBC cells that promotes tumor aggressiveness. ANGPTL4 emerges as a key mediator in this process, making it a promising therapeutic target to inhibit TNBC progression.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"44 1","pages":"192"},"PeriodicalIF":12.8000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12231887/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-025-03458-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The adipocyte-rich tumor microenvironment (TME) is recognized as a key factor in promoting cancer progression. A distinct characteristic of peritumoral adipocytes is their reduced lipid content and the acquisition of a proinflammatory phenotype. However, the underlying mechanisms by which adipocytes rewire metabolism and boost tumor progression in triple-negative breast cancer (TNBC) remain poorly understood.
Methods: We utilized transcriptomic analysis, bioinformatic analysis, metabolic flux analysis, protein-protein docking, gene and protein expression profiling, in vivo metastasis analysis and breast cancer specimens to explore how adipocytes reprogram tumor metabolism and progression in TNBC.
Results: Our findings reveal that Angiopoietin-like 4 (ANGPTL4) exhibits significantly higher expression levels in adipocyte-rich tumor circumstance compared to the symbiotic environment lacking of adipocyte. Furthermore, ANGPTL4 expression in tumor cells is essential for adipocyte-driven glycolysis and metastasis. Interleukin 6 (IL-6), enriched in cancer-associated adipocytes, and lipolysis-derived free fatty acids (FFAs) released from adipocytes, amplify ANGPTL4-mediated glycolysis and metastasis through activation of STAT3 and PPARα pathways in TNBC cells. Additionally, ANGPTL4 interacts with transcription factor KLF4 and enhances KLF4 activity, which further drives glycolysis and metastasis, whereas KLF4 knockdown attenuates migration and glycolysis in TNBC cells. Importantly, Elevated ANGPTL4 and KLF4 expression was observed in metastatic breast cancer specimens compared to non-metastatic cases and was positively correlated with poor prognosis.
Conclusion: Collectively, our results uncover a complex metabolic interaction between adipocytes and TNBC cells that promotes tumor aggressiveness. ANGPTL4 emerges as a key mediator in this process, making it a promising therapeutic target to inhibit TNBC progression.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.