A PRISMA systematic review through time on predictive musculoskeletal simulations.

IF 5.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Menthy Denayer, Eligia Alfio, María Alejandra Díaz, Massimo Sartori, Friedl De Groote, Kevin De Pauw, Tom Verstraten
{"title":"A PRISMA systematic review through time on predictive musculoskeletal simulations.","authors":"Menthy Denayer, Eligia Alfio, María Alejandra Díaz, Massimo Sartori, Friedl De Groote, Kevin De Pauw, Tom Verstraten","doi":"10.1186/s12984-025-01686-w","DOIUrl":null,"url":null,"abstract":"<p><p>This PRISMA systematic review covers the literature on predictive, musculoskeletal simulations. First, we define predictive movement for musculoskeletal systems, as the current literature suffers from inconsistent nomenclature. We distinguish two methods of prediction. The first uses neural models, like muscle-reflex-based and central pattern generator models. The second uses optimization, to make up for the lack of a neural model, like optimal control and deep reinforcement learning. For each method, we illustrate the main concepts and report accuracies, simulation times and limitations. Moreover, we identified key works over the past 50 years, which are fundamental for the current state-of-the-art. The majority of works employ optimization. We recognize six classes of cost function terms and note they are often combined using linear combinations. We describe musculoskeletal models, their muscle model, ground contact model and personalization. Similarly, we identify key software like OpenSim and SCONE. Additionally, we provide an overview of simulated movements, pathologies and assistive devices. We emphasize the difference in tracking simulations and prediction, while clarifying the benefits of using experimental data to predict movement. Finally, we call for quantitative validation to establish comprehensive comparisons between methods. To this end, we share a list of works open-sourcing their codes.</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":"22 1","pages":"149"},"PeriodicalIF":5.2000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12228224/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroEngineering and Rehabilitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12984-025-01686-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This PRISMA systematic review covers the literature on predictive, musculoskeletal simulations. First, we define predictive movement for musculoskeletal systems, as the current literature suffers from inconsistent nomenclature. We distinguish two methods of prediction. The first uses neural models, like muscle-reflex-based and central pattern generator models. The second uses optimization, to make up for the lack of a neural model, like optimal control and deep reinforcement learning. For each method, we illustrate the main concepts and report accuracies, simulation times and limitations. Moreover, we identified key works over the past 50 years, which are fundamental for the current state-of-the-art. The majority of works employ optimization. We recognize six classes of cost function terms and note they are often combined using linear combinations. We describe musculoskeletal models, their muscle model, ground contact model and personalization. Similarly, we identify key software like OpenSim and SCONE. Additionally, we provide an overview of simulated movements, pathologies and assistive devices. We emphasize the difference in tracking simulations and prediction, while clarifying the benefits of using experimental data to predict movement. Finally, we call for quantitative validation to establish comprehensive comparisons between methods. To this end, we share a list of works open-sourcing their codes.

Abstract Image

Abstract Image

Abstract Image

预测肌肉骨骼模拟的PRISMA系统回顾。
这个PRISMA系统回顾涵盖了预测,肌肉骨骼模拟的文献。首先,我们定义预测运动肌肉骨骼系统,因为目前的文献遭受不一致的命名法。我们区分了两种预测方法。第一种使用神经模型,如基于肌肉反射和中枢模式生成器模型。第二种使用优化,以弥补神经模型的不足,如最优控制和深度强化学习。对于每种方法,我们都说明了主要概念,并报告了准确性,模拟时间和局限性。此外,我们确定了过去50年的关键工作,这些工作对当前的先进技术至关重要。大多数工作采用优化。我们认识到六类成本函数项,并注意到它们通常使用线性组合组合。我们描述了肌肉骨骼模型,他们的肌肉模型,地面接触模型和个性化。同样,我们确定了OpenSim和SCONE等关键软件。此外,我们提供了模拟运动,病理和辅助设备的概述。我们强调跟踪模拟和预测的区别,同时澄清使用实验数据预测运动的好处。最后,我们呼吁进行定量验证,以建立方法之间的全面比较。为此,我们分享了一份开源代码的作品列表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of NeuroEngineering and Rehabilitation
Journal of NeuroEngineering and Rehabilitation 工程技术-工程:生物医学
CiteScore
9.60
自引率
3.90%
发文量
122
审稿时长
24 months
期刊介绍: Journal of NeuroEngineering and Rehabilitation considers manuscripts on all aspects of research that result from cross-fertilization of the fields of neuroscience, biomedical engineering, and physical medicine & rehabilitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信