A New Wearable System for Personal Air Pollution Exposure Estimation: Pilot Observational Study.

IF 6.2 2区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Sara Bernasconi, Alessandra Angelucci, Andrea Rossi, Andrea Aliverti
{"title":"A New Wearable System for Personal Air Pollution Exposure Estimation: Pilot Observational Study.","authors":"Sara Bernasconi, Alessandra Angelucci, Andrea Rossi, Andrea Aliverti","doi":"10.2196/60426","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Air pollution is a major environmental cause of premature deaths, responsible for around 7 million deaths annually. In this context, personal air pollution exposure (PAPE), the product of pollutant concentration and minute ventilation (V'm), is a crucial measure for understanding individual health risks. Standard exposure techniques do not address the space-time variability of air pollution, both indoor and outdoor, and the intra- and intersubject variability in V'm.</p><p><strong>Objective: </strong>This study evaluates the feasibility of using a wearable body sensor network (BSN) to estimate PAPE in real-life settings, assess its capability to detect spatiotemporal variations in pollution levels, and compare inhaled dose estimates from the BSN with those from fixed monitoring stations and standard V'm values. The study also examines the system's usability.</p><p><strong>Methods: </strong>The system, a BSN capturing physiological (pulse rate [PR] and respiratory rate [RR]) and environmental data, including health-affecting pollutants (particulate matter [PM] 1, PM2.5, PM10, CO2, CO, total volatile organic compounds, and NO2), was tested in a 4.5 km walk in Milan by 20 healthy volunteers. PR and RR collected by the system were used, together with biometric data and forced vital capacity estimations, in a model for V'm estimation to compute PAPE. Pollution levels were compared between morning and afternoon measurements, as well as between indoor and outdoor settings.</p><p><strong>Results: </strong>Variations in RR were found among volunteers and at different locations for the same participant. Significant differences (P<.001) in pollutant concentrations were observed between morning and afternoon for CO2 (higher in the morning) and PM (higher in the afternoon). Spatial variability along the walking path was also detected, highlighting the system's high spatiotemporal resolution. Indoor environments showed high variability in CO2 and total volatile organic compounds, while outdoor settings exhibited elevated and variable PM levels. The mean PAPE to PM2.5 estimated with tabulated V'm and fixed station data was 13.31 (SD 4.16) μg while the one estimated with the BSN was 16.27 (SD 9.78) μg, 2.96 μg higher (22.3%; 95% CI -6.55 to 0.63; P=.05) than the former one, and with a broader IQR. Nevertheless, the 2 estimation methods show a good and strongly significant correlation (r=0.665; P<.001). The system's usability was generally rated as good.</p><p><strong>Conclusions: </strong>The BSN provides high-resolution spatiotemporal data on personal exposure, capturing differences in pollution levels dependent on time, location, and surrounding environment, along with individual physiological variations. It offers a more accurate estimation of inhaled dose in real-life settings, supporting personalized exposure assessments and potential applications in activity planning and complementing epidemiological research.</p>","PeriodicalId":14756,"journal":{"name":"JMIR mHealth and uHealth","volume":"13 ","pages":"e60426"},"PeriodicalIF":6.2000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12248256/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR mHealth and uHealth","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/60426","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Air pollution is a major environmental cause of premature deaths, responsible for around 7 million deaths annually. In this context, personal air pollution exposure (PAPE), the product of pollutant concentration and minute ventilation (V'm), is a crucial measure for understanding individual health risks. Standard exposure techniques do not address the space-time variability of air pollution, both indoor and outdoor, and the intra- and intersubject variability in V'm.

Objective: This study evaluates the feasibility of using a wearable body sensor network (BSN) to estimate PAPE in real-life settings, assess its capability to detect spatiotemporal variations in pollution levels, and compare inhaled dose estimates from the BSN with those from fixed monitoring stations and standard V'm values. The study also examines the system's usability.

Methods: The system, a BSN capturing physiological (pulse rate [PR] and respiratory rate [RR]) and environmental data, including health-affecting pollutants (particulate matter [PM] 1, PM2.5, PM10, CO2, CO, total volatile organic compounds, and NO2), was tested in a 4.5 km walk in Milan by 20 healthy volunteers. PR and RR collected by the system were used, together with biometric data and forced vital capacity estimations, in a model for V'm estimation to compute PAPE. Pollution levels were compared between morning and afternoon measurements, as well as between indoor and outdoor settings.

Results: Variations in RR were found among volunteers and at different locations for the same participant. Significant differences (P<.001) in pollutant concentrations were observed between morning and afternoon for CO2 (higher in the morning) and PM (higher in the afternoon). Spatial variability along the walking path was also detected, highlighting the system's high spatiotemporal resolution. Indoor environments showed high variability in CO2 and total volatile organic compounds, while outdoor settings exhibited elevated and variable PM levels. The mean PAPE to PM2.5 estimated with tabulated V'm and fixed station data was 13.31 (SD 4.16) μg while the one estimated with the BSN was 16.27 (SD 9.78) μg, 2.96 μg higher (22.3%; 95% CI -6.55 to 0.63; P=.05) than the former one, and with a broader IQR. Nevertheless, the 2 estimation methods show a good and strongly significant correlation (r=0.665; P<.001). The system's usability was generally rated as good.

Conclusions: The BSN provides high-resolution spatiotemporal data on personal exposure, capturing differences in pollution levels dependent on time, location, and surrounding environment, along with individual physiological variations. It offers a more accurate estimation of inhaled dose in real-life settings, supporting personalized exposure assessments and potential applications in activity planning and complementing epidemiological research.

一种新的可穿戴式个人空气污染暴露评估系统:试点观测研究。
背景:空气污染是导致过早死亡的主要环境原因,每年造成约700万人死亡。在这种情况下,个人空气污染暴露(PAPE),即污染物浓度和分钟通气量(V'm)的乘积,是了解个人健康风险的关键措施。标准暴露技术不能解决室内和室外空气污染的时空变异性,以及人体内部和主体间的变异性。目的:本研究评估了在现实环境中使用可穿戴身体传感器网络(BSN)估算PAPE的可行性,评估了其检测污染水平时空变化的能力,并将BSN估算的吸入剂量与固定监测站和标准V值进行了比较。该研究还考察了系统的可用性。方法:20名健康志愿者在米兰步行4.5公里,对该BSN系统进行测试,该系统捕获生理(脉搏率[PR]和呼吸率[RR])和环境数据,包括影响健康的污染物(颗粒物[PM] 1、PM2.5、PM10、CO2、CO、总挥发性有机化合物和NO2)。利用系统收集的PR和RR,结合生物特征数据和强制肺活量估计,建立V'm估计模型,计算PAPE。研究人员比较了上午和下午的污染水平,以及室内和室外环境的污染水平。结果:在志愿者之间和同一参与者的不同位置发现RR的差异。结论:BSN提供了个人暴露的高分辨率时空数据,捕捉了污染水平随时间、地点和周围环境的差异,以及个体生理变化。它提供了在现实环境中更准确的吸入剂量估计,支持个性化暴露评估和在活动规划中的潜在应用,并补充流行病学研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JMIR mHealth and uHealth
JMIR mHealth and uHealth Medicine-Health Informatics
CiteScore
12.60
自引率
4.00%
发文量
159
审稿时长
10 weeks
期刊介绍: JMIR mHealth and uHealth (JMU, ISSN 2291-5222) is a spin-off journal of JMIR, the leading eHealth journal (Impact Factor 2016: 5.175). JMIR mHealth and uHealth is indexed in PubMed, PubMed Central, and Science Citation Index Expanded (SCIE), and in June 2017 received a stunning inaugural Impact Factor of 4.636. The journal focusses on health and biomedical applications in mobile and tablet computing, pervasive and ubiquitous computing, wearable computing and domotics. JMIR mHealth and uHealth publishes since 2013 and was the first mhealth journal in Pubmed. It publishes even faster and has a broader scope with including papers which are more technical or more formative/developmental than what would be published in the Journal of Medical Internet Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信