Oncogenic YAP sensitizes cells to CHK1 inhibition via CDK4/6 driven G1 acceleration.

IF 6.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Dörthe Gertzmann, Cornelius Presek, Anna Lena Mattes, Marco Sänger, Marie Zoller, Christina Schülein-Völk, Carsten P Ade, Martin Eilers, Stefan Gaubatz
{"title":"Oncogenic YAP sensitizes cells to CHK1 inhibition via CDK4/6 driven G1 acceleration.","authors":"Dörthe Gertzmann, Cornelius Presek, Anna Lena Mattes, Marco Sänger, Marie Zoller, Christina Schülein-Völk, Carsten P Ade, Martin Eilers, Stefan Gaubatz","doi":"10.1038/s44319-025-00514-5","DOIUrl":null,"url":null,"abstract":"<p><p>Replication stress is a driver of genomic instability, contributing to carcinogenesis by causing DNA damage and mutations. While YAP, the downstream co-activator of the Hippo signaling pathway, plays a crucial role in regulating cell growth and differentiation, it is unclear whether it generates replication stress exploitable for therapy. Here, we report that oncogenic YAP shortens the G1 phase through increased CDK4/6 activity, leading to early S-phase entry. This causes origin underlicensing, an overall reduced rate of DNA replication, and, unusually, an accelerated speed of individual replication forks. CHK1 inhibition in cells expressing oncogenic YAP results in DNA damage during S-phase, which is not due to premature CDK1 activation or mitotic entry. Sensitivity to CHK1 inhibition depends on the YAP-TEAD interaction and involves a global increase in transcription and an increase in transcription-replication conflicts (TRCs). Replication stress from oncogenic YAP can be mitigated by restoring G1 length through partial CDK4/6 inhibition or by reducing YAP-induced hypertranscription. Our findings suggest a potential therapeutic strategy for targeting YAP-dependent cancers by exploiting their vulnerability to replication stress.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-025-00514-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Replication stress is a driver of genomic instability, contributing to carcinogenesis by causing DNA damage and mutations. While YAP, the downstream co-activator of the Hippo signaling pathway, plays a crucial role in regulating cell growth and differentiation, it is unclear whether it generates replication stress exploitable for therapy. Here, we report that oncogenic YAP shortens the G1 phase through increased CDK4/6 activity, leading to early S-phase entry. This causes origin underlicensing, an overall reduced rate of DNA replication, and, unusually, an accelerated speed of individual replication forks. CHK1 inhibition in cells expressing oncogenic YAP results in DNA damage during S-phase, which is not due to premature CDK1 activation or mitotic entry. Sensitivity to CHK1 inhibition depends on the YAP-TEAD interaction and involves a global increase in transcription and an increase in transcription-replication conflicts (TRCs). Replication stress from oncogenic YAP can be mitigated by restoring G1 length through partial CDK4/6 inhibition or by reducing YAP-induced hypertranscription. Our findings suggest a potential therapeutic strategy for targeting YAP-dependent cancers by exploiting their vulnerability to replication stress.

致癌YAP通过CDK4/6驱动的G1加速使细胞对CHK1抑制敏感。
复制压力是基因组不稳定的驱动因素,通过引起DNA损伤和突变来促进致癌。虽然Hippo信号通路的下游共激活因子YAP在调节细胞生长和分化中起着至关重要的作用,但目前尚不清楚它是否会产生可用于治疗的复制应激。在这里,我们报道了致癌YAP通过增加CDK4/6活性缩短G1期,导致早期s期进入。这导致了起源许可不足,DNA复制的总体速度降低,而且不同寻常的是,个体复制分叉的速度加快。在表达致癌YAP的细胞中,CHK1抑制导致s期DNA损伤,这不是由于CDK1过早激活或有丝分裂进入。对CHK1抑制的敏感性取决于YAP-TEAD相互作用,涉及转录的全局增加和转录复制冲突(TRCs)的增加。可通过部分抑制CDK4/6或减少YAP诱导的超转录来恢复G1长度,从而减轻致癌YAP的复制应激。我们的发现提示了一种潜在的治疗策略,通过利用yap依赖性癌症对复制应激的脆弱性来靶向它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EMBO Reports
EMBO Reports 生物-生化与分子生物学
CiteScore
11.20
自引率
1.30%
发文量
267
审稿时长
1 months
期刊介绍: EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings. The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that: Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels. Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies. Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding. Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts. EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry. 
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信