Nuo Xu, Jinran Wu, Fengjing Cai, Xi'an Li, Hong-Bo Xie
{"title":"ViT-GCN: a novel hybrid model for accurate pneumonia diagnosis from x-ray images.","authors":"Nuo Xu, Jinran Wu, Fengjing Cai, Xi'an Li, Hong-Bo Xie","doi":"10.1088/2057-1976/adebf4","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to enhance the accuracy of pneumonia diagnosis from x-ray images by developing a model that integrates Vision Transformer (ViT) and Graph Convolutional Networks (GCN) for improved feature extraction and diagnostic performance. The ViT-GCN model was designed to leverage the strengths of both ViT, which captures global image information by dividing the image into fixed-size patches and processing them in sequence, and GCN, which captures node features and relationships through message passing and aggregation in graph data. A composite loss function combining multivariate cross-entropy, focal loss, and GHM loss was introduced to address dataset imbalance and improve training efficiency on small datasets. The ViT-GCN model demonstrated superior performance, achieving an accuracy of 91.43% on the COVID-19 chest x-ray database, surpassing existing models in diagnostic accuracy for pneumonia. The study highlights the effectiveness of combining ViT and GCN architectures in medical image diagnosis, particularly in addressing challenges related to small datasets. This approach can lead to more accurate and efficient pneumonia diagnoses, especially in resource-constrained settings where small datasets are common.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/adebf4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to enhance the accuracy of pneumonia diagnosis from x-ray images by developing a model that integrates Vision Transformer (ViT) and Graph Convolutional Networks (GCN) for improved feature extraction and diagnostic performance. The ViT-GCN model was designed to leverage the strengths of both ViT, which captures global image information by dividing the image into fixed-size patches and processing them in sequence, and GCN, which captures node features and relationships through message passing and aggregation in graph data. A composite loss function combining multivariate cross-entropy, focal loss, and GHM loss was introduced to address dataset imbalance and improve training efficiency on small datasets. The ViT-GCN model demonstrated superior performance, achieving an accuracy of 91.43% on the COVID-19 chest x-ray database, surpassing existing models in diagnostic accuracy for pneumonia. The study highlights the effectiveness of combining ViT and GCN architectures in medical image diagnosis, particularly in addressing challenges related to small datasets. This approach can lead to more accurate and efficient pneumonia diagnoses, especially in resource-constrained settings where small datasets are common.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.