Advancing smart aquaculture: Cost-efficient strategies for climbing perch cultivation using AI-based models

IF 5.7 Q1 AGRICULTURAL ENGINEERING
Kosit Sriputhorn , Achara Jutagate , Surasak Matitopanum , Rungwasun Kraiklang , Rapeepan Pitakaso , Chakat Chueadee , Sarayut Gonwirat
{"title":"Advancing smart aquaculture: Cost-efficient strategies for climbing perch cultivation using AI-based models","authors":"Kosit Sriputhorn ,&nbsp;Achara Jutagate ,&nbsp;Surasak Matitopanum ,&nbsp;Rungwasun Kraiklang ,&nbsp;Rapeepan Pitakaso ,&nbsp;Chakat Chueadee ,&nbsp;Sarayut Gonwirat","doi":"10.1016/j.atech.2025.101108","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a hybrid AI-based optimization framework to enhance climbing perch aquaculture in smart farming systems, targeting improvements in both productivity and cost-efficiency. By integrating Taguchi experimental design with reinforcement learning and metaheuristic algorithms, the model identifies critical environmental and operational parameters that influence fish growth and economic outcomes. A multi-objective regression approach is applied to optimize key factors including water temperature, dissolved oxygen, pH, feeding schedules, and stocking densities. The RL-AMIS method, which combines Pareto front analysis and TOPSIS, successfully balances trade-offs between cost and productivity. Experimental results show a 15.3 % reduction in operational costs and a 17.8 % improvement in growth efficiency compared to conventional methods. These findings demonstrate that AI-driven optimization can enhance scalability and adaptability in aquaculture systems, supporting sustainable production strategies.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"12 ","pages":"Article 101108"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375525003417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a hybrid AI-based optimization framework to enhance climbing perch aquaculture in smart farming systems, targeting improvements in both productivity and cost-efficiency. By integrating Taguchi experimental design with reinforcement learning and metaheuristic algorithms, the model identifies critical environmental and operational parameters that influence fish growth and economic outcomes. A multi-objective regression approach is applied to optimize key factors including water temperature, dissolved oxygen, pH, feeding schedules, and stocking densities. The RL-AMIS method, which combines Pareto front analysis and TOPSIS, successfully balances trade-offs between cost and productivity. Experimental results show a 15.3 % reduction in operational costs and a 17.8 % improvement in growth efficiency compared to conventional methods. These findings demonstrate that AI-driven optimization can enhance scalability and adaptability in aquaculture systems, supporting sustainable production strategies.
推进智能水产养殖:基于人工智能模型的攀鲈养殖成本效益策略
本研究介绍了一种基于人工智能的混合优化框架,以提高智能养殖系统中的攀鲈养殖,目标是提高生产力和成本效益。通过将田口实验设计与强化学习和元启发式算法相结合,该模型确定了影响鱼类生长和经济成果的关键环境和操作参数。采用多目标回归方法对水温、溶解氧、pH、投料时间和放养密度等关键因素进行优化。RL-AMIS方法结合了帕累托前沿分析和TOPSIS,成功地平衡了成本和生产率之间的平衡。实验结果表明,与传统方法相比,操作成本降低15.3%,生长效率提高17.8%。这些发现表明,人工智能驱动的优化可以提高水产养殖系统的可扩展性和适应性,支持可持续生产战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信