Minimal shuttle vectors for Saccharomyces cerevisiae.

IF 2.6 Q2 BIOCHEMICAL RESEARCH METHODS
Synthetic biology (Oxford, England) Pub Date : 2025-05-21 eCollection Date: 2025-01-01 DOI:10.1093/synbio/ysaf010
Lorenzo Scutteri, Patrick Barth, Sahand Jamal Rahi
{"title":"Minimal shuttle vectors for <i>Saccharomyces cerevisiae</i>.","authors":"Lorenzo Scutteri, Patrick Barth, Sahand Jamal Rahi","doi":"10.1093/synbio/ysaf010","DOIUrl":null,"url":null,"abstract":"<p><p>Sophisticated genetic engineering tasks such as protein domain grafting and multi-gene fusions are hampered by the lack of suitable vector backbones. In particular, many restriction sites are in the backbone outside the polylinker region (multiple cloning site; MCS) and thus unavailable for use, and the overall length of a plasmid correlates with poorer ligation efficiency. To address this need, we describe the design and validation of a collection of six minimal integrating or centromeric shuttle vectors for <i>Saccharomyces cerevisiae</i>, a widely used model organism in synthetic biology. We constructed the plasmids using <i>de novo</i> gene synthesis and consisting only of a yeast selection marker (<i>HIS3</i>, <i>LEU2</i>, <i>TRP1</i>, <i>URA3</i>, <i>KanMX</i>, or <i>natMX6</i>), a bacterial selection marker (ampicillin resistance), an origin of replication, and the MCS flanked by M13 forward and reverse sequences. We used truncated variants of these elements where available and eliminated all other sequences typically found in plasmids. The MCS consists of ten unique restriction sites. To our knowledge, at sizes ranging from ~2.6 to 3.5 kb, these are the smallest shuttle vectors described for yeast. Further, we removed common restriction sites in the open reading frames and terminators, freeing up ~30 cut sites in each plasmid. We named our pLS series in accordance with the well-known pRS vectors, which are on average 63% larger: pLS400, pLS410 (<i>KanMX</i>); pLS403, pLS413 (<i>HIS3</i>); pLS404, pLS414 (<i>TRP1</i>); pLS405, pLS415 (<i>LEU2</i>); pLS406, pLS416 (<i>URA3</i>); and pLS408, pLS418 (<i>natMX6</i>). This resource substantially simplifies advanced synthetic biology engineering in <i>S. cerevisiae</i>.</p>","PeriodicalId":74902,"journal":{"name":"Synthetic biology (Oxford, England)","volume":"10 1","pages":"ysaf010"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12224612/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic biology (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/synbio/ysaf010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Sophisticated genetic engineering tasks such as protein domain grafting and multi-gene fusions are hampered by the lack of suitable vector backbones. In particular, many restriction sites are in the backbone outside the polylinker region (multiple cloning site; MCS) and thus unavailable for use, and the overall length of a plasmid correlates with poorer ligation efficiency. To address this need, we describe the design and validation of a collection of six minimal integrating or centromeric shuttle vectors for Saccharomyces cerevisiae, a widely used model organism in synthetic biology. We constructed the plasmids using de novo gene synthesis and consisting only of a yeast selection marker (HIS3, LEU2, TRP1, URA3, KanMX, or natMX6), a bacterial selection marker (ampicillin resistance), an origin of replication, and the MCS flanked by M13 forward and reverse sequences. We used truncated variants of these elements where available and eliminated all other sequences typically found in plasmids. The MCS consists of ten unique restriction sites. To our knowledge, at sizes ranging from ~2.6 to 3.5 kb, these are the smallest shuttle vectors described for yeast. Further, we removed common restriction sites in the open reading frames and terminators, freeing up ~30 cut sites in each plasmid. We named our pLS series in accordance with the well-known pRS vectors, which are on average 63% larger: pLS400, pLS410 (KanMX); pLS403, pLS413 (HIS3); pLS404, pLS414 (TRP1); pLS405, pLS415 (LEU2); pLS406, pLS416 (URA3); and pLS408, pLS418 (natMX6). This resource substantially simplifies advanced synthetic biology engineering in S. cerevisiae.

酿酒酵母的最小穿梭载体。
由于缺乏合适的载体骨架,复杂的基因工程任务,如蛋白质结构域嫁接和多基因融合受到阻碍。特别是,许多限制性内切位点位于多连接子区域以外的主干(多克隆位点;MCS),因此无法使用,质粒的总长度与较差的连接效率相关。为了满足这一需求,我们描述了合成生物学中广泛使用的模式生物酿酒酵母(Saccharomyces cerevisiae)的六个最小积分或着丝粒穿梭载体的设计和验证。我们使用从头合成的方法构建了质粒,质粒仅由酵母选择标记(HIS3、LEU2、TRP1、URA3、KanMX或natMX6)、细菌选择标记(氨苄西林耐药性)、复制起点和M13正向和反向序列两侧的MCS组成。我们在可用的情况下使用这些元件的截断变体,并消除了质粒中通常发现的所有其他序列。MCS由十个独特的酶切位点组成。据我们所知,在~2.6到3.5 kb的大小范围内,这些是酵母中描述的最小的穿梭载体。此外,我们删除了开放阅读框和终止子中常见的限制性内切位点,在每个质粒中释放出约30个切割位点。我们根据众所周知的pr向量来命名我们的pLS系列,它们平均大63%:pLS400, pLS410 (KanMX);pLS403, pLS413 (HIS3);pLS404, pLS414 (TRP1);pLS405, pLS415 (LEU2);pLS406, pLS416 (URA3);pLS408, pLS418 (natMX6)。该资源极大地简化了酿酒酵母的高级合成生物工程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信