Phosphonate-driven oxic CH4 production by Variovorax xiamenensis sp. nov.: insights from marine and freshwater microbial adaptations to P-limitation.

IF 5.1 Q1 ECOLOGY
ISME communications Pub Date : 2025-06-16 eCollection Date: 2025-01-01 DOI:10.1093/ismeco/ycaf100
Yu Wang, Shaohe Wang, Zifu Xu, Silin Ni, Min Xu, Shuh-Ji Kao
{"title":"Phosphonate-driven oxic CH<sub>4</sub> production by <i>Variovorax xiamenensis</i> sp. nov.: insights from marine and freshwater microbial adaptations to P-limitation.","authors":"Yu Wang, Shaohe Wang, Zifu Xu, Silin Ni, Min Xu, Shuh-Ji Kao","doi":"10.1093/ismeco/ycaf100","DOIUrl":null,"url":null,"abstract":"<p><p>Methane (CH₄) emissions in oxygenated aquatic environments challenge traditional views of methanogenesis suggesting the presence of alternative microbial CH₄ production pathways. This study identifies a novel bacterial species, <i>Variovorax xiamenensis</i> W6<sup>T</sup>, capable of utilizing methylphosphonate (MPn) as its sole phosphorus (P) source under laboratory conditions, thereby supporting growth and CH₄ production in phosphorus-limited conditions. Transcriptomic analyses, as well as incubation experiments, reveal that CH₄ emission via the phosphonate-degrading <i>phn</i> gene cluster, encoding a C-P lyase, is tightly regulated by inorganic phosphate (Pi) availability, linking nutrient scarcity to methane cycling. A genomic survey of over 16 000 prokaryotic genomes reveals the widespread occurrence of <i>phn</i> gene cluster in 9% of the analyzed genomes, predominantly within the phylum <i>Pseudomonadota</i>. While MPn metabolism has been well-documented in marine environments, its presence and ecological role in freshwater systems remain underexplored. Our findings highlight the potential for phosphonate-driven methane production in freshwater ecosystems and underscore the need for further research to quantify MPn concentrations and its contribution to global methane budgets. This study emphasizes the importance of integrating microbial phosphonate metabolism into models of biogeochemical cycling and climate predictions, particularly under scenarios of increasing phosphorus limitation driven by global warming.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycaf100"},"PeriodicalIF":5.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12226003/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycaf100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Methane (CH₄) emissions in oxygenated aquatic environments challenge traditional views of methanogenesis suggesting the presence of alternative microbial CH₄ production pathways. This study identifies a novel bacterial species, Variovorax xiamenensis W6T, capable of utilizing methylphosphonate (MPn) as its sole phosphorus (P) source under laboratory conditions, thereby supporting growth and CH₄ production in phosphorus-limited conditions. Transcriptomic analyses, as well as incubation experiments, reveal that CH₄ emission via the phosphonate-degrading phn gene cluster, encoding a C-P lyase, is tightly regulated by inorganic phosphate (Pi) availability, linking nutrient scarcity to methane cycling. A genomic survey of over 16 000 prokaryotic genomes reveals the widespread occurrence of phn gene cluster in 9% of the analyzed genomes, predominantly within the phylum Pseudomonadota. While MPn metabolism has been well-documented in marine environments, its presence and ecological role in freshwater systems remain underexplored. Our findings highlight the potential for phosphonate-driven methane production in freshwater ecosystems and underscore the need for further research to quantify MPn concentrations and its contribution to global methane budgets. This study emphasizes the importance of integrating microbial phosphonate metabolism into models of biogeochemical cycling and climate predictions, particularly under scenarios of increasing phosphorus limitation driven by global warming.

厦门Variovorax ximenensis sp. nov.磷酸盐驱动的氧化CH4生产:从海洋和淡水微生物适应磷限制的见解。
氧合水生环境中甲烷(CH₄)的排放挑战了传统的甲烷生成观点,表明存在替代的微生物CH₄生产途径。本研究鉴定了一种新型细菌——厦门Variovorax ximenensis W6T,该细菌能够在实验室条件下利用甲基膦酸盐(MPn)作为其唯一的磷(P)来源,从而支持其在限磷条件下的生长和生成氯化铵。转录组学分析和培养实验表明,通过编码C-P裂解酶的磷酸盐降解phn基因簇释放的CH₄受到无机磷酸盐(Pi)有效性的严格调控,将营养匮乏与甲烷循环联系起来。对16000多个原核生物基因组的基因组调查显示,phn基因簇广泛存在于9%的分析基因组中,主要存在于假单胞菌门。虽然海洋环境中MPn代谢已被充分记录,但其在淡水系统中的存在和生态作用仍未得到充分探讨。我们的研究结果强调了淡水生态系统中磷酸盐驱动甲烷产生的潜力,并强调了进一步研究量化MPn浓度及其对全球甲烷预算的贡献的必要性。本研究强调了将微生物膦酸盐代谢整合到生物地球化学循环和气候预测模型中的重要性,特别是在全球变暖导致磷限制增加的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信