{"title":"Content-based X-ray image retrieval using fusion of local neighboring patterns and deep features for lung disease detection.","authors":"Ankur Prakash, Vibhav Prakash Singh","doi":"10.1007/s12194-025-00932-z","DOIUrl":null,"url":null,"abstract":"<p><p>This paper introduces a Content-Based Medical Image Retrieval (CBMIR) system for detecting and retrieving lung disease cases to assist doctors and radiologists in clinical decision-making. The system combines texture-based features using Local Binary Patterns (LBP) with deep learning-based features extracted from pretrained CNN models, including VGG-16, DenseNet121, and InceptionV3. The objective is to identify the optimal fusion of texture and deep features to enhance the image retrieval performance. Various similarity measures, including Euclidean, Manhattan, and cosine similarities, were evaluated, with Cosine Similarity demonstrating the best performance, achieving an average precision of 65.5%. For COVID-19 cases, VGG-16 achieved a precision of 52.5%, while LBP performed best for the normal class with 85% precision. The fusion of LBP, VGG-16, and DenseNet121 excelled in pneumonia cases, with a precision of 93.5%. Overall, VGG-16 delivered the highest average precision of 74.0% across all classes, followed by LBP at 72.0%. The fusion of texture (LBP) and deep features from all CNN models achieved 86% accuracy for the retrieval of the top 10 images, supporting healthcare professionals in making more informed clinical decisions.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-025-00932-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a Content-Based Medical Image Retrieval (CBMIR) system for detecting and retrieving lung disease cases to assist doctors and radiologists in clinical decision-making. The system combines texture-based features using Local Binary Patterns (LBP) with deep learning-based features extracted from pretrained CNN models, including VGG-16, DenseNet121, and InceptionV3. The objective is to identify the optimal fusion of texture and deep features to enhance the image retrieval performance. Various similarity measures, including Euclidean, Manhattan, and cosine similarities, were evaluated, with Cosine Similarity demonstrating the best performance, achieving an average precision of 65.5%. For COVID-19 cases, VGG-16 achieved a precision of 52.5%, while LBP performed best for the normal class with 85% precision. The fusion of LBP, VGG-16, and DenseNet121 excelled in pneumonia cases, with a precision of 93.5%. Overall, VGG-16 delivered the highest average precision of 74.0% across all classes, followed by LBP at 72.0%. The fusion of texture (LBP) and deep features from all CNN models achieved 86% accuracy for the retrieval of the top 10 images, supporting healthcare professionals in making more informed clinical decisions.
期刊介绍:
The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.