Nthabiseng Kgabele Matjomane, Lisa Repsold, Sean Mark Patrick, Magdalena Catherina van Zijl, Michelle Helen Visagie, Natalie Hildegard Aneck-Hahn
{"title":"<i>In vitro</i> effects of environmentally relevant concentrations of nonylphenol and selected pyrethroid metabolites on a mouse sertoli cell line (TM4).","authors":"Nthabiseng Kgabele Matjomane, Lisa Repsold, Sean Mark Patrick, Magdalena Catherina van Zijl, Michelle Helen Visagie, Natalie Hildegard Aneck-Hahn","doi":"10.1080/15376516.2025.2528100","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in the chemical industry and increased environmental pollution have contributed to declining reproductive health. Many pollutants act as endocrine-disrupting chemicals (EDCs), with (anti-)estrogenic and (anti-)androgenic properties that disrupt hormonal balance and contribute to male reproductive dysfunction. Mouse Sertoli cells, which closely resemble human Sertoli cells, are targets for various environmental contaminants, making the cell line an ideal model for male reproductive toxicological studies. Sertoli cells (TM4) were exposed to environmentally relevant concentrations of EDCs, including cypermethrin, deltamethrin, rac-trans permethrinic acid, 3-phenoxybenzoic acid and <i>para</i>-nonylphenol (<i>p</i>-NP), for 24 h <i>in vitro.</i> Cytotoxicity was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, oxidative stress <i>via</i> an intracellular total reactive oxygen species (ROS) activity assay kit, and morphological changes <i>via</i> hematoxylin & eosin staining. The MTT assay revealed a moderate decrease (approximately 20% cell death) in cell viability. ROS levels were significantly higher in EDC-treated cells than in controls, with small effect sizes confirmed through Cohen's <i>d</i> analysis. Morphological changes, including membrane elongation, cytoplasmic vesicles, and reduced cell density, were most pronounced in <i>p-</i>NP-exposed cells. These findings suggest that exposure to pyrethroids and nonylphenol may induce toxicity in mouse Sertoli cells.</p>","PeriodicalId":23177,"journal":{"name":"Toxicology Mechanisms and Methods","volume":" ","pages":"1-10"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2025.2528100","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Advances in the chemical industry and increased environmental pollution have contributed to declining reproductive health. Many pollutants act as endocrine-disrupting chemicals (EDCs), with (anti-)estrogenic and (anti-)androgenic properties that disrupt hormonal balance and contribute to male reproductive dysfunction. Mouse Sertoli cells, which closely resemble human Sertoli cells, are targets for various environmental contaminants, making the cell line an ideal model for male reproductive toxicological studies. Sertoli cells (TM4) were exposed to environmentally relevant concentrations of EDCs, including cypermethrin, deltamethrin, rac-trans permethrinic acid, 3-phenoxybenzoic acid and para-nonylphenol (p-NP), for 24 h in vitro. Cytotoxicity was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, oxidative stress via an intracellular total reactive oxygen species (ROS) activity assay kit, and morphological changes via hematoxylin & eosin staining. The MTT assay revealed a moderate decrease (approximately 20% cell death) in cell viability. ROS levels were significantly higher in EDC-treated cells than in controls, with small effect sizes confirmed through Cohen's d analysis. Morphological changes, including membrane elongation, cytoplasmic vesicles, and reduced cell density, were most pronounced in p-NP-exposed cells. These findings suggest that exposure to pyrethroids and nonylphenol may induce toxicity in mouse Sertoli cells.
期刊介绍:
Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy.
Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment.