Automated identification of spotted-fever tick vectors using convolutional neural networks.

IF 1.6 3区 农林科学 Q2 ENTOMOLOGY
Isadora R C Gomes, Vinícius L Miranda, José Fabrício C Leal, Igor P Oliveira, Paula J Silva, Karla Bitencourth, Claudio M Rodrigues, Liege R Siqueira, Marcelo B Labruna, Gilberto S Gazeta, Marinete Amorim, Rodrigo Gurgel-Gonçalves
{"title":"Automated identification of spotted-fever tick vectors using convolutional neural networks.","authors":"Isadora R C Gomes, Vinícius L Miranda, José Fabrício C Leal, Igor P Oliveira, Paula J Silva, Karla Bitencourth, Claudio M Rodrigues, Liege R Siqueira, Marcelo B Labruna, Gilberto S Gazeta, Marinete Amorim, Rodrigo Gurgel-Gonçalves","doi":"10.1111/mve.12822","DOIUrl":null,"url":null,"abstract":"<p><p>Ticks are key ectoparasites for the One Health approach, as they are vectors of pathogens that infect humans, domestic and wild animals. The bacteria Rickettsia rickettsii and R. parkeri are the aetiological agents of tick-borne spotted fever (SF) in South America, where Amblyomma sculptum, A. aureolatum, A. ovale and A. triste are the main vectors. Studies in the medical and biological fields show that artificial intelligence, through machine learning, has great potential to assist researchers and health professionals in image identification practices. The aim of this study was to evaluate the performance of the Convolutional Neural Networks (CNN) AlexNet, ResNet-50 and MobileNetV2 for identifying tick species transmitting SF bioagents. We organised an image database with the following groups: females (368), males (458), dorsal (423), ventral (403), low resolution (328), high resolution (498) and all together (sex+position+resolution = 826), to identify the three main vectors of SF bioagents (Amblyomma aureolatum, A. ovale and A. sculptum), two other possible vectors (A. triste and A. dubitatum) and the species A. cajennense sensu stricto (s.s.), which has similar morphology to A. sculptum but no known vectorial capacity. To evaluate the network's performance, we measured accuracy, sensitivity and specificity. We used Grad-CAM to highlight the regions of the images most relevant to the predictions. CNNs achieved accuracy rates of ~90% in identifying ticks and showed sensitivities of 59%-100% according to species, sex, position or image resolution. When considering all images, both AlexNet and MobileNetV2 recorded the best sensitivity and specificity values in identifying SF vectors. The most relevant areas for classifying species varied according to algorithms. Our results support the idea of using CNNs for the automated identification of tick species transmitting SF bioagents in South America. Our database could support the development of tick identification apps to aid public health surveillance and contribute to citizen science.</p>","PeriodicalId":18350,"journal":{"name":"Medical and Veterinary Entomology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical and Veterinary Entomology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/mve.12822","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ticks are key ectoparasites for the One Health approach, as they are vectors of pathogens that infect humans, domestic and wild animals. The bacteria Rickettsia rickettsii and R. parkeri are the aetiological agents of tick-borne spotted fever (SF) in South America, where Amblyomma sculptum, A. aureolatum, A. ovale and A. triste are the main vectors. Studies in the medical and biological fields show that artificial intelligence, through machine learning, has great potential to assist researchers and health professionals in image identification practices. The aim of this study was to evaluate the performance of the Convolutional Neural Networks (CNN) AlexNet, ResNet-50 and MobileNetV2 for identifying tick species transmitting SF bioagents. We organised an image database with the following groups: females (368), males (458), dorsal (423), ventral (403), low resolution (328), high resolution (498) and all together (sex+position+resolution = 826), to identify the three main vectors of SF bioagents (Amblyomma aureolatum, A. ovale and A. sculptum), two other possible vectors (A. triste and A. dubitatum) and the species A. cajennense sensu stricto (s.s.), which has similar morphology to A. sculptum but no known vectorial capacity. To evaluate the network's performance, we measured accuracy, sensitivity and specificity. We used Grad-CAM to highlight the regions of the images most relevant to the predictions. CNNs achieved accuracy rates of ~90% in identifying ticks and showed sensitivities of 59%-100% according to species, sex, position or image resolution. When considering all images, both AlexNet and MobileNetV2 recorded the best sensitivity and specificity values in identifying SF vectors. The most relevant areas for classifying species varied according to algorithms. Our results support the idea of using CNNs for the automated identification of tick species transmitting SF bioagents in South America. Our database could support the development of tick identification apps to aid public health surveillance and contribute to citizen science.

利用卷积神经网络自动识别斑点热蜱媒。
蜱虫是“同一个健康”方法的主要体外寄生虫,因为它们是感染人类、家畜和野生动物的病原体载体。南美洲蜱传斑疹热的病原是立克次体和帕克瑞氏体,其中雕塑钝眼虫、金黄色单胞虫、卵形单胞虫和三体单胞虫是主要媒介。医学和生物学领域的研究表明,通过机器学习,人工智能在帮助研究人员和卫生专业人员进行图像识别实践方面具有巨大潜力。本研究的目的是评价卷积神经网络(CNN) AlexNet、ResNet-50和MobileNetV2识别传播SF生物制剂蜱类的性能。我们组织了一个图像数据库,包括雌性(368)、雄性(458)、背部(423)、腹部(403)、低分辨率(328)、高分辨率(498)和所有组(性别+位置+分辨率= 826),以确定SF生物制剂的三个主要载体(金色浅腹虫、卵形浅腹虫和雕塑浅腹虫),另外两个可能的载体(triste和dubitatum浅腹虫)和与雕塑浅腹虫形态相似但没有已知媒介能力的cajennense sensu stricto (s.s.)。为了评估网络的性能,我们测量了准确性、灵敏度和特异性。我们使用Grad-CAM来突出显示与预测最相关的图像区域。cnn识别蜱虫的准确率约为90%,根据物种、性别、位置或图像分辨率的敏感性为59%-100%。综合考虑所有图像,AlexNet和MobileNetV2在识别SF载体方面都记录了最佳的灵敏度和特异性值。物种分类最相关的领域因算法而异。我们的结果支持使用cnn自动识别南美传播SF生物制剂的蜱类的想法。我们的数据库可以支持蜱虫识别应用程序的开发,以帮助公共卫生监督,并为公民科学做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical and Veterinary Entomology
Medical and Veterinary Entomology 农林科学-昆虫学
CiteScore
3.70
自引率
5.30%
发文量
65
审稿时长
12-24 weeks
期刊介绍: Medical and Veterinary Entomology is the leading periodical in its field. The Journal covers the biology and control of insects, ticks, mites and other arthropods of medical and veterinary importance. The main strengths of the Journal lie in the fields of: -epidemiology and transmission of vector-borne pathogens changes in vector distribution that have impact on the pathogen transmission- arthropod behaviour and ecology- novel, field evaluated, approaches to biological and chemical control methods- host arthropod interactions. Please note that we do not consider submissions in forensic entomology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信