Yifan Tong , Yutong Li , Yaguang Bi , Yajiao Liu , Xiaoping Peng , Binfeng He , Xiang Wang
{"title":"Rab26-mediated lysosomal translocation of eEF1A alleviates myocardial hypertrophy and cardiac remodeling","authors":"Yifan Tong , Yutong Li , Yaguang Bi , Yajiao Liu , Xiaoping Peng , Binfeng He , Xiang Wang","doi":"10.1016/j.lfs.2025.123830","DOIUrl":null,"url":null,"abstract":"<div><h3>Backgrounds</h3><div>Pathological myocardial hypertrophy and cardiac remodeling are a maladaptive response to stressors such as hypertension and genetic mutations, characterized by cardiomyocyte enlargement, fibrosis, cardiomyocyte apoptosis and impaired cardiac function. Rab26, a small GTPase, plays a crucial role in vesicle trafficking, secretion and apoptosis. However, its role in myocardial hypertrophy and cardiac remodeling remains unclear.</div></div><div><h3>Methods</h3><div>Transverse aortic constriction (TAC) model was employed to induce myocardial hypertrophy and cardiac remodeling, with functional and histological assessments. Cardiac-specific Rab26 overexpression was achieved via AAV9-cTnT-Rab26 delivery, while Rab26 knockout was used for loss-of-function analysis. Molecular mechanisms were explored using protein interaction studies, fluorescence co-localization, and protease inhibition assays.</div></div><div><h3>Results</h3><div>Our findings indicated a significant downregulation of Rab26 protein expression in the disease model, while its mRNA levels remained unaltered. Notably, cardiac-specific overexpression of Rab26 led to improved cardiac function, decreased cardiac fibrosis, suppressed myocardial hypertrophy and cardiomyocyte apoptosis. Furthermore, the knockout of Rab26 aggravated myocardial hypertrophy and cardiac remodeling. At the mechanistic level, Rab26 facilitates lysosomal translocation and degradation of eEF1A. Additionally, eEF1A silencing eliminated the protective effect of Rab26 on the heart. Comprehensive evaluation revealed the critical role of the Rab26-eEF1A axis in mediating pathological myocardial hypertrophy and cardiac remodeling.</div></div><div><h3>Conclusions</h3><div>This study suggests that Rab26 prevents cardiac remodeling and dysfunction under pressure overload by promoting the lysosome translocation and degradation of eEF1A. Targeting the Rab26-eEF1A axis thus provides a potential strategy for preventing or reversing myocardial hypertrophy and cardiac remodeling.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"378 ","pages":"Article 123830"},"PeriodicalIF":5.1000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320525004655","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Backgrounds
Pathological myocardial hypertrophy and cardiac remodeling are a maladaptive response to stressors such as hypertension and genetic mutations, characterized by cardiomyocyte enlargement, fibrosis, cardiomyocyte apoptosis and impaired cardiac function. Rab26, a small GTPase, plays a crucial role in vesicle trafficking, secretion and apoptosis. However, its role in myocardial hypertrophy and cardiac remodeling remains unclear.
Methods
Transverse aortic constriction (TAC) model was employed to induce myocardial hypertrophy and cardiac remodeling, with functional and histological assessments. Cardiac-specific Rab26 overexpression was achieved via AAV9-cTnT-Rab26 delivery, while Rab26 knockout was used for loss-of-function analysis. Molecular mechanisms were explored using protein interaction studies, fluorescence co-localization, and protease inhibition assays.
Results
Our findings indicated a significant downregulation of Rab26 protein expression in the disease model, while its mRNA levels remained unaltered. Notably, cardiac-specific overexpression of Rab26 led to improved cardiac function, decreased cardiac fibrosis, suppressed myocardial hypertrophy and cardiomyocyte apoptosis. Furthermore, the knockout of Rab26 aggravated myocardial hypertrophy and cardiac remodeling. At the mechanistic level, Rab26 facilitates lysosomal translocation and degradation of eEF1A. Additionally, eEF1A silencing eliminated the protective effect of Rab26 on the heart. Comprehensive evaluation revealed the critical role of the Rab26-eEF1A axis in mediating pathological myocardial hypertrophy and cardiac remodeling.
Conclusions
This study suggests that Rab26 prevents cardiac remodeling and dysfunction under pressure overload by promoting the lysosome translocation and degradation of eEF1A. Targeting the Rab26-eEF1A axis thus provides a potential strategy for preventing or reversing myocardial hypertrophy and cardiac remodeling.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.