Andjela Sekulic, Sarah M Herr, Kelly Mulfaul, Inga-Marie Pompös, Silvia Winkler, Carola Dietrich, Benedikt Obermayer, Robert F Mullins, Thomas Conrad, Peter F Zipfel, Florian Sennlaub, Christine Skerka, Olaf Strauß
{"title":"Factor-H-related protein 1 (FHR1), a promotor of para-inflammation in age-related macular degeneration.","authors":"Andjela Sekulic, Sarah M Herr, Kelly Mulfaul, Inga-Marie Pompös, Silvia Winkler, Carola Dietrich, Benedikt Obermayer, Robert F Mullins, Thomas Conrad, Peter F Zipfel, Florian Sennlaub, Christine Skerka, Olaf Strauß","doi":"10.1186/s12974-025-03499-z","DOIUrl":null,"url":null,"abstract":"<p><p>Age-related macular degeneration (AMD), a multifactorial type of retinal degeneration represents the most common cause for blindness in elderly. Polymorphisms in complement factor-H increase, while absence of factor-H-related protein-1 (FHR1) decreases the AMD risk, currently explained by their opposing relationship. Here we identify a FHR1-driven pathway fostering chronic cellular inflammation. FHR1 accumulates below the retinal pigment epithelium (RPE) in AMD donor tissue and similarly the murine homolog, muFHR1 is abundant in three AMD-relevant mouse models. These mouse models express the muFHR1 receptor EGF-like module-containing mucin-like hormone receptor 1 (Emr1) on the RPE and on invading mononuclear phagocytes (MP), where both cells form clusters via muFHR1/Emr1. FHR1 ignited EMR2-dependent Ca<sup>2+</sup>-signals and gene expression in both human RPE cell line and in vivo where muFHR1 affects Emr1<sup>+</sup> cells (RPE and MP) gene expression shown by RNAseq analysis. As muFHR1 deletion in mice revealed significantly reduced MP invasion and neoangiogenesis in laser-induced choroidal neovascularization, we hypothesize that FHR1 accumulates, stabilizes and activates MP in the stage of RPE degeneration.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"22 1","pages":"173"},"PeriodicalIF":10.1000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12226897/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-025-03499-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Age-related macular degeneration (AMD), a multifactorial type of retinal degeneration represents the most common cause for blindness in elderly. Polymorphisms in complement factor-H increase, while absence of factor-H-related protein-1 (FHR1) decreases the AMD risk, currently explained by their opposing relationship. Here we identify a FHR1-driven pathway fostering chronic cellular inflammation. FHR1 accumulates below the retinal pigment epithelium (RPE) in AMD donor tissue and similarly the murine homolog, muFHR1 is abundant in three AMD-relevant mouse models. These mouse models express the muFHR1 receptor EGF-like module-containing mucin-like hormone receptor 1 (Emr1) on the RPE and on invading mononuclear phagocytes (MP), where both cells form clusters via muFHR1/Emr1. FHR1 ignited EMR2-dependent Ca2+-signals and gene expression in both human RPE cell line and in vivo where muFHR1 affects Emr1+ cells (RPE and MP) gene expression shown by RNAseq analysis. As muFHR1 deletion in mice revealed significantly reduced MP invasion and neoangiogenesis in laser-induced choroidal neovascularization, we hypothesize that FHR1 accumulates, stabilizes and activates MP in the stage of RPE degeneration.
期刊介绍:
The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes.
Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems.
The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.