Huibert C Ruitenbeek, Sahil Sahil, Aradhana Kumar, Ravi Kumar Kushawaha, Swetha Tanamala, Saigopal Sathyamurthy, Rohitashva Agrawal, Subhankar Chattoraj, Jasika Paramasamy, Daniel Bos, Roshan Fahimi, Edwin H G Oei, Jacob J Visser
{"title":"Cross-validation of an artificial intelligence tool for fracture classification and localization on conventional radiography in Dutch population.","authors":"Huibert C Ruitenbeek, Sahil Sahil, Aradhana Kumar, Ravi Kumar Kushawaha, Swetha Tanamala, Saigopal Sathyamurthy, Rohitashva Agrawal, Subhankar Chattoraj, Jasika Paramasamy, Daniel Bos, Roshan Fahimi, Edwin H G Oei, Jacob J Visser","doi":"10.1186/s13244-025-02034-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The aim of this study is to validate the effectiveness of an AI tool trained on Indian data in a Dutch medical center and to assess its ability to classify and localize fractures.</p><p><strong>Methods: </strong>Conventional radiographs acquired between January 2019 and November 2022 were analyzed using a multitask deep neural network. The tool, trained on Indian data, identified and localized fractures in 17 body parts. The reference standard was based on radiology reports resulting from routine clinical workflow and confirmed by an experienced musculoskeletal radiologist. The analysis included both patient-wise and fracture-wise evaluations, employing binary and Intersection over Union (IoU) metrics to assess fracture detection and localization accuracy.</p><p><strong>Results: </strong>In total, 14,311 radiographs (median age, 48 years (range 18-98), 7265 male) were analyzed and categorized by body parts; clavicle, shoulder, humerus, elbow, forearm, wrist, hand and finger, pelvis, hip, femur, knee, lower leg, ankle, foot and toe. 4156/14,311 (29%) had fractures. The AI tool demonstrated overall patient-wise sensitivity, specificity, and AUC of 87.1% (95% CI: 86.1-88.1%), 87.1% (95% CI: 86.4-87.7%), and 0.92 (95% CI: 0.91-0.93), respectively. Fracture detection rate was 60% overall, ranging from 7% for rib fractures to 90% for clavicle fractures.</p><p><strong>Conclusions: </strong>This study validates a fracture detection AI tool on a Western-European dataset, originally trained on Indian data. While classification performance is robust on real clinical data, fracture-wise analysis reveals variability in localization accuracy, underscoring the need for refinement in fracture localization.</p><p><strong>Critical relevance statement: </strong>AI may provide help by enabling optimal use of limited resources or personnel. This study evaluates an AI tool designed to aid in detecting fractures, possibly reducing reading time or optimization of radiology workflow by prioritizing fracture-positive cases.</p><p><strong>Key points: </strong>Cross-validation on a consecutive Dutch cohort confirms this AI tool's clinical robustness. The tool detected fractures with 87% sensitivity, 87% specificity, and 0.92 AUC. AI localizes 60% of fractures, the highest for clavicle (90%) and lowest for ribs (7%).</p>","PeriodicalId":13639,"journal":{"name":"Insights into Imaging","volume":"16 1","pages":"150"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229378/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insights into Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13244-025-02034-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: The aim of this study is to validate the effectiveness of an AI tool trained on Indian data in a Dutch medical center and to assess its ability to classify and localize fractures.
Methods: Conventional radiographs acquired between January 2019 and November 2022 were analyzed using a multitask deep neural network. The tool, trained on Indian data, identified and localized fractures in 17 body parts. The reference standard was based on radiology reports resulting from routine clinical workflow and confirmed by an experienced musculoskeletal radiologist. The analysis included both patient-wise and fracture-wise evaluations, employing binary and Intersection over Union (IoU) metrics to assess fracture detection and localization accuracy.
Results: In total, 14,311 radiographs (median age, 48 years (range 18-98), 7265 male) were analyzed and categorized by body parts; clavicle, shoulder, humerus, elbow, forearm, wrist, hand and finger, pelvis, hip, femur, knee, lower leg, ankle, foot and toe. 4156/14,311 (29%) had fractures. The AI tool demonstrated overall patient-wise sensitivity, specificity, and AUC of 87.1% (95% CI: 86.1-88.1%), 87.1% (95% CI: 86.4-87.7%), and 0.92 (95% CI: 0.91-0.93), respectively. Fracture detection rate was 60% overall, ranging from 7% for rib fractures to 90% for clavicle fractures.
Conclusions: This study validates a fracture detection AI tool on a Western-European dataset, originally trained on Indian data. While classification performance is robust on real clinical data, fracture-wise analysis reveals variability in localization accuracy, underscoring the need for refinement in fracture localization.
Critical relevance statement: AI may provide help by enabling optimal use of limited resources or personnel. This study evaluates an AI tool designed to aid in detecting fractures, possibly reducing reading time or optimization of radiology workflow by prioritizing fracture-positive cases.
Key points: Cross-validation on a consecutive Dutch cohort confirms this AI tool's clinical robustness. The tool detected fractures with 87% sensitivity, 87% specificity, and 0.92 AUC. AI localizes 60% of fractures, the highest for clavicle (90%) and lowest for ribs (7%).
期刊介绍:
Insights into Imaging (I³) is a peer-reviewed open access journal published under the brand SpringerOpen. All content published in the journal is freely available online to anyone, anywhere!
I³ continuously updates scientific knowledge and progress in best-practice standards in radiology through the publication of original articles and state-of-the-art reviews and opinions, along with recommendations and statements from the leading radiological societies in Europe.
Founded by the European Society of Radiology (ESR), I³ creates a platform for educational material, guidelines and recommendations, and a forum for topics of controversy.
A balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes I³ an indispensable source for current information in this field.
I³ is owned by the ESR, however authors retain copyright to their article according to the Creative Commons Attribution License (see Copyright and License Agreement). All articles can be read, redistributed and reused for free, as long as the author of the original work is cited properly.
The open access fees (article-processing charges) for this journal are kindly sponsored by ESR for all Members.
The journal went open access in 2012, which means that all articles published since then are freely available online.