In-ovo imaging using ostrich eggs: biodistribution of F-18-FDG in ostrich embryos.

IF 2.8 4区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Experimental Biology and Medicine Pub Date : 2025-06-19 eCollection Date: 2025-01-01 DOI:10.3389/ebm.2025.10560
Thomas Winkens, Pauline Schweitzer, Olga Perkas, Christian Kühnel, Ferdinand Ndum, Marta Pomraenke, Julia Greiser, Martin Freesmeyer
{"title":"In-ovo imaging using ostrich eggs: biodistribution of F-18-FDG in ostrich embryos.","authors":"Thomas Winkens, Pauline Schweitzer, Olga Perkas, Christian Kühnel, Ferdinand Ndum, Marta Pomraenke, Julia Greiser, Martin Freesmeyer","doi":"10.3389/ebm.2025.10560","DOIUrl":null,"url":null,"abstract":"<p><p>In-ovo imaging using ostrich eggs has been described as an alternative to animal testing using rodents. This approach is not considered an animal experiment and it does not require small-animal imaging devices as ostrich eggs provide good image quality on regular CT, MRI or PET used in humans. The aims of this study were 1) to describe methods of radiopharmaceutical injection, 2) to explore normal biodistribution of F-18-FDG during a 60-min list-mode-PET/CT examination and 3) to compare biodistribution in-ovo to existing literature considering chicken and rodents. Vessel access was successful in 54/78 ostrich eggs. Highest FDG-uptake was observed in epiphyseal plates (0.36 ± 0.06 IA%/g; range 0.29-0.48 IA%/g) and brain (0.25 ± 0.05 IA%/g; range 0.21-0.36 IA%/g). <i>In-vivo</i> activity distribution on PET and <i>ex-vivo</i> activity distribution (well counter) showed comparable results (Spearman's Rho range 0.795-0.882). No significant differences were observed regarding previous isoflurane exposure. Normal biodistribution of F-18-FDG in ostrich embryos using a standard PET/CT system for humans was mainly found as expected with highest uptake in epiphyseal plates and brain which is comparable to results on rodents and chicken embryos. Isoflurane anesthesia did not reveal significant differences regarding organ uptake. The results of this normal distribution study allow for interpretation of future disease models (inflammation, tumor) in ostrich embryos using F-18-FDG as radiopharmaceutical.</p>","PeriodicalId":12163,"journal":{"name":"Experimental Biology and Medicine","volume":"250 ","pages":"10560"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12222030/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/ebm.2025.10560","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

In-ovo imaging using ostrich eggs has been described as an alternative to animal testing using rodents. This approach is not considered an animal experiment and it does not require small-animal imaging devices as ostrich eggs provide good image quality on regular CT, MRI or PET used in humans. The aims of this study were 1) to describe methods of radiopharmaceutical injection, 2) to explore normal biodistribution of F-18-FDG during a 60-min list-mode-PET/CT examination and 3) to compare biodistribution in-ovo to existing literature considering chicken and rodents. Vessel access was successful in 54/78 ostrich eggs. Highest FDG-uptake was observed in epiphyseal plates (0.36 ± 0.06 IA%/g; range 0.29-0.48 IA%/g) and brain (0.25 ± 0.05 IA%/g; range 0.21-0.36 IA%/g). In-vivo activity distribution on PET and ex-vivo activity distribution (well counter) showed comparable results (Spearman's Rho range 0.795-0.882). No significant differences were observed regarding previous isoflurane exposure. Normal biodistribution of F-18-FDG in ostrich embryos using a standard PET/CT system for humans was mainly found as expected with highest uptake in epiphyseal plates and brain which is comparable to results on rodents and chicken embryos. Isoflurane anesthesia did not reveal significant differences regarding organ uptake. The results of this normal distribution study allow for interpretation of future disease models (inflammation, tumor) in ostrich embryos using F-18-FDG as radiopharmaceutical.

鸵鸟卵卵成像:F-18-FDG在鸵鸟胚胎中的生物分布。
利用鸵鸟蛋进行卵内成像被认为是一种替代啮齿类动物实验的方法。这种方法不被认为是动物实验,它不需要小动物成像设备,因为鸵鸟蛋在人类使用的常规CT, MRI或PET上提供良好的图像质量。本研究的目的是1)描述放射性药物注射的方法,2)在60分钟列表模式pet /CT检查期间探索F-18-FDG的正常生物分布,3)将鸡和啮齿动物的生物分布与现有文献进行比较。78个鸵鸟蛋中有54个成功进入血管。骨骺板fdg摄取量最高(0.36±0.06 IA%/g;范围0.29-0.48 IA%/g)和脑(0.25±0.05 IA%/g);范围0.21-0.36 IA%/g)。PET的体内活性分布与离体活性分布(井计数器)结果相当(Spearman's Rho范围0.795-0.882)。在之前的异氟烷暴露中没有观察到显著差异。使用标准的人类PET/CT系统,在鸵鸟胚胎中发现F-18-FDG的正常生物分布,主要发现在骨骺板和大脑中摄取最高,与啮齿动物和鸡胚胎的结果相当。异氟醚麻醉在器官摄取方面没有显着差异。这项正态分布研究的结果允许使用F-18-FDG作为放射性药物来解释鸵鸟胚胎中未来的疾病模型(炎症、肿瘤)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental Biology and Medicine
Experimental Biology and Medicine 医学-医学:研究与实验
CiteScore
6.00
自引率
0.00%
发文量
157
审稿时长
1 months
期刊介绍: Experimental Biology and Medicine (EBM) is a global, peer-reviewed journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. EBM provides both research and review articles as well as meeting symposia and brief communications. Articles in EBM represent cutting edge research at the overlapping junctions of the biological, physical and engineering sciences that impact upon the health and welfare of the world''s population. Topics covered in EBM include: Anatomy/Pathology; Biochemistry and Molecular Biology; Bioimaging; Biomedical Engineering; Bionanoscience; Cell and Developmental Biology; Endocrinology and Nutrition; Environmental Health/Biomarkers/Precision Medicine; Genomics, Proteomics, and Bioinformatics; Immunology/Microbiology/Virology; Mechanisms of Aging; Neuroscience; Pharmacology and Toxicology; Physiology; Stem Cell Biology; Structural Biology; Systems Biology and Microphysiological Systems; and Translational Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信