{"title":"Identification of Novel Biomarkers of Bacterial Lipopolysaccharides in Diabetic Nephropathy via Transcriptomics and Mendelian Randomization.","authors":"Yaxian Ning, Jianqin Wang, Xiaochun Zhou, Gouqin Wang, Lili Zhang","doi":"10.2174/0115665232353811250527053550","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Dysbiosis of Intestinal Flora Lipopolysaccharides (LPS) is implicated in Diabetic Nephropathy (DN), yet the underlying mechanisms remain unclear. This study aims to elucidate the causal relationship between bacterial LPS and DN, with the goal of informing targeted therapeutic strategies.</p><p><strong>Methods: </strong>DN datasets GSE30528 and GSE96804 were analyzed. Bacterial LPS-related genes (LPS-RGs) were retrieved from the Gene Set Enrichment Analysis (GSEA) database. Differential expression analysis identified differentially expressed genes (DEGs), which were cross-referenced with LPS-RGs to derive DE-LPS-RGs. Mendelian randomization (MR) was applied to explore correlations between exposure factors and outcomes using GWAS data. miRNA-mRNA and TFmRNA regulatory networks were constructed using data from the TarBase and ENCODE databases, and potential therapeutic agents were identified through the DGIdb database.</p><p><strong>Results: </strong>Seven DE-LPS-RGs were identified, with CD14 and LY86 selected as biomarkers. GSEA and GeneMANIA analyses indicated that these genes participate in signal transduction and chargelike receptor signaling pathways. The regulatory networks demonstrated that LY86 interacts with miRNA hsa-mir-26a-5p, while TF ELK1 regulates both CD14 and LY86. Additionally, CD14 was associated with three potential drugs: VB-201, IC14, and Lovastatin.</p><p><strong>Conclusion: </strong>CD14 and LY86 represent promising biomarkers for DN, offering new perspectives for its prediction, diagnosis, and therapeutic intervention.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115665232353811250527053550","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Dysbiosis of Intestinal Flora Lipopolysaccharides (LPS) is implicated in Diabetic Nephropathy (DN), yet the underlying mechanisms remain unclear. This study aims to elucidate the causal relationship between bacterial LPS and DN, with the goal of informing targeted therapeutic strategies.
Methods: DN datasets GSE30528 and GSE96804 were analyzed. Bacterial LPS-related genes (LPS-RGs) were retrieved from the Gene Set Enrichment Analysis (GSEA) database. Differential expression analysis identified differentially expressed genes (DEGs), which were cross-referenced with LPS-RGs to derive DE-LPS-RGs. Mendelian randomization (MR) was applied to explore correlations between exposure factors and outcomes using GWAS data. miRNA-mRNA and TFmRNA regulatory networks were constructed using data from the TarBase and ENCODE databases, and potential therapeutic agents were identified through the DGIdb database.
Results: Seven DE-LPS-RGs were identified, with CD14 and LY86 selected as biomarkers. GSEA and GeneMANIA analyses indicated that these genes participate in signal transduction and chargelike receptor signaling pathways. The regulatory networks demonstrated that LY86 interacts with miRNA hsa-mir-26a-5p, while TF ELK1 regulates both CD14 and LY86. Additionally, CD14 was associated with three potential drugs: VB-201, IC14, and Lovastatin.
Conclusion: CD14 and LY86 represent promising biomarkers for DN, offering new perspectives for its prediction, diagnosis, and therapeutic intervention.
期刊介绍:
Current Gene Therapy is a bi-monthly peer-reviewed journal aimed at academic and industrial scientists with an interest in major topics concerning basic research and clinical applications of gene and cell therapy of diseases. Cell therapy manuscripts can also include application in diseases when cells have been genetically modified. Current Gene Therapy publishes full-length/mini reviews and original research on the latest developments in gene transfer and gene expression analysis, vector development, cellular genetic engineering, animal models and human clinical applications of gene and cell therapy for the treatment of diseases.
Current Gene Therapy publishes reviews and original research containing experimental data on gene and cell therapy. The journal also includes manuscripts on technological advances, ethical and regulatory considerations of gene and cell therapy. Reviews should provide the reader with a comprehensive assessment of any area of experimental biology applied to molecular medicine that is not only of significance within a particular field of gene therapy and cell therapy but also of interest to investigators in other fields. Authors are encouraged to provide their own assessment and vision for future advances. Reviews are also welcome on late breaking discoveries on which substantial literature has not yet been amassed. Such reviews provide a forum for sharply focused topics of recent experimental investigations in gene therapy primarily to make these results accessible to both clinical and basic researchers. Manuscripts containing experimental data should be original data, not previously published.