Xiaolei Ma, Mengxing Cheng, Yanxin Jia, Kun Zhang, Haocheng Zhang, Di Feng, Wenxiao Xu, Guofen Qiao
{"title":"Demethylzeylasteral suppresses the expression of MESP1 by reducing H3K18la level to inhibit the malignant behaviors of pancreatic cancer.","authors":"Xiaolei Ma, Mengxing Cheng, Yanxin Jia, Kun Zhang, Haocheng Zhang, Di Feng, Wenxiao Xu, Guofen Qiao","doi":"10.1038/s41420-025-02603-9","DOIUrl":null,"url":null,"abstract":"<p><p>Glycolysis is a hallmark metabolic pathway in pancreatic cancer (PC). As the end product of glycolysis, lactic acid accumulates significantly in PC. Lactic acid serves as a primary substrate for histone lactylation, leading to an upregulation of histone lactylation levels, which likely contributes to progression of PC. This study reveals novel insights, highlighting that H3K18la levels are elevated in PC tissues and cells. Notably, the natural compound demethylzeylasteral (DML), derived from Tripterygium wilfordii Hook F (TwHF), substantially decreases lactic acid generation in PC cells, subsequently resulting in the downregulation of H3K18la levels and inhibiting the aggressive characteristics of PC cells. To further investigate the underlying mechanisms, we conducted RNA-seq analysis on DML-treated cells and ChIP-seq analyses for H3K18la. For the first time, mesoderm-related factor 1 (MESP1) was identified as a target protein modulated by both DML and H3K18la. DML was shown to repress the expression of MESP1, while sodium lactate (Nala) was found to partially restore its expression levels. Overexpression of MESP1 was linked to the promotion of epithelial-mesenchymal transition (EMT) and apoptosis in PC cells. Furthermore, RNA-seq analyses following MESP1 silencing indicated its significant association with critical physiological processes in PC cells, including the cell cycle, apoptosis, and cell adhesion. Importantly, MESP1 has also been connected to various cancer metabolism pathways, such as MAPK, PI3K-AKT, and carbon metabolism. This research is groundbreaking in demonstrating that DML impedes the malignant behavior of PC cells by downregulating H3K18la levels and diminishing the expression of the oncogene MESP1.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"305"},"PeriodicalIF":6.1000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229608/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02603-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glycolysis is a hallmark metabolic pathway in pancreatic cancer (PC). As the end product of glycolysis, lactic acid accumulates significantly in PC. Lactic acid serves as a primary substrate for histone lactylation, leading to an upregulation of histone lactylation levels, which likely contributes to progression of PC. This study reveals novel insights, highlighting that H3K18la levels are elevated in PC tissues and cells. Notably, the natural compound demethylzeylasteral (DML), derived from Tripterygium wilfordii Hook F (TwHF), substantially decreases lactic acid generation in PC cells, subsequently resulting in the downregulation of H3K18la levels and inhibiting the aggressive characteristics of PC cells. To further investigate the underlying mechanisms, we conducted RNA-seq analysis on DML-treated cells and ChIP-seq analyses for H3K18la. For the first time, mesoderm-related factor 1 (MESP1) was identified as a target protein modulated by both DML and H3K18la. DML was shown to repress the expression of MESP1, while sodium lactate (Nala) was found to partially restore its expression levels. Overexpression of MESP1 was linked to the promotion of epithelial-mesenchymal transition (EMT) and apoptosis in PC cells. Furthermore, RNA-seq analyses following MESP1 silencing indicated its significant association with critical physiological processes in PC cells, including the cell cycle, apoptosis, and cell adhesion. Importantly, MESP1 has also been connected to various cancer metabolism pathways, such as MAPK, PI3K-AKT, and carbon metabolism. This research is groundbreaking in demonstrating that DML impedes the malignant behavior of PC cells by downregulating H3K18la levels and diminishing the expression of the oncogene MESP1.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.