{"title":"A Combined Diffusion Model and Reinforcement Learning Approach for Solving the Vehicle Routing Problem With Multiple Soft Time Windows","authors":"Yu Qiao;Jianjun Miao;Xiaoying Huang","doi":"10.1109/ACCESS.2025.3583984","DOIUrl":null,"url":null,"abstract":"The Vehicle Routing Problem with Multiple Soft Time Windows (VRPMSTW) is a challenging combinatorial optimization problem where a fleet of vehicles must deliver goods to a set of customers, adhering to time windows while minimizing costs. In this paper, we propose a novel solution approach that combines a Diffusion Model with Reinforcement Learning (RL) to efficiently solve the VRPMSTW. The Diffusion Model generates feasible vehicle routes by denoising a noise distribution, ensuring that constraints such as vehicle capacity, travel distance, and time windows are respected. Subsequently, the RL module fine-tunes these paths by optimizing the objective function, which minimizes the number of vehicles, travel distance, and time window penalties. We evaluate our approach on benchmark datasets and compare it with other state-of-the-art methods. The results demonstrate that our combined model outperforms traditional heuristics, achieving better optimization in terms of the number of vehicles, travel cost, and time window violations. The proposed method provides a promising solution for solving complex real-world vehicle routing problems with soft time window constraints.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"113529-113543"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11053837","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11053837/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The Vehicle Routing Problem with Multiple Soft Time Windows (VRPMSTW) is a challenging combinatorial optimization problem where a fleet of vehicles must deliver goods to a set of customers, adhering to time windows while minimizing costs. In this paper, we propose a novel solution approach that combines a Diffusion Model with Reinforcement Learning (RL) to efficiently solve the VRPMSTW. The Diffusion Model generates feasible vehicle routes by denoising a noise distribution, ensuring that constraints such as vehicle capacity, travel distance, and time windows are respected. Subsequently, the RL module fine-tunes these paths by optimizing the objective function, which minimizes the number of vehicles, travel distance, and time window penalties. We evaluate our approach on benchmark datasets and compare it with other state-of-the-art methods. The results demonstrate that our combined model outperforms traditional heuristics, achieving better optimization in terms of the number of vehicles, travel cost, and time window violations. The proposed method provides a promising solution for solving complex real-world vehicle routing problems with soft time window constraints.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.