Large language models for disease diagnosis: a scoping review.

NPJ artificial intelligence.. Pub Date : 2025-01-01 Epub Date: 2025-06-09 DOI:10.1038/s44387-025-00011-z
Shuang Zhou, Zidu Xu, Mian Zhang, Chunpu Xu, Yawen Guo, Zaifu Zhan, Yi Fang, Sirui Ding, Jiashuo Wang, Kaishuai Xu, Liqiao Xia, Jeremy Yeung, Daochen Zha, Dongming Cai, Genevieve B Melton, Mingquan Lin, Rui Zhang
{"title":"Large language models for disease diagnosis: a scoping review.","authors":"Shuang Zhou, Zidu Xu, Mian Zhang, Chunpu Xu, Yawen Guo, Zaifu Zhan, Yi Fang, Sirui Ding, Jiashuo Wang, Kaishuai Xu, Liqiao Xia, Jeremy Yeung, Daochen Zha, Dongming Cai, Genevieve B Melton, Mingquan Lin, Rui Zhang","doi":"10.1038/s44387-025-00011-z","DOIUrl":null,"url":null,"abstract":"<p><p>Automatic disease diagnosis has become increasingly valuable in clinical practice. The advent of large language models (LLMs) has catalyzed a paradigm shift in artificial intelligence, with growing evidence supporting the efficacy of LLMs in diagnostic tasks. Despite the increasing attention in this field, a holistic view is still lacking. Many critical aspects remain unclear, such as the diseases and clinical data to which LLMs have been applied, the LLM techniques employed, and the evaluation methods used. In this article, we perform a comprehensive review of LLM-based methods for disease diagnosis. Our review examines the existing literature across various dimensions, including disease types and associated clinical specialties, clinical data, LLM techniques, and evaluation methods. Additionally, we offer recommendations for applying and evaluating LLMs for diagnostic tasks. Furthermore, we assess the limitations of current research and discuss future directions. To our knowledge, this is the first comprehensive review for LLM-based disease diagnosis.</p>","PeriodicalId":520920,"journal":{"name":"NPJ artificial intelligence..","volume":"1 1","pages":"9"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12216946/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ artificial intelligence..","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44387-025-00011-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic disease diagnosis has become increasingly valuable in clinical practice. The advent of large language models (LLMs) has catalyzed a paradigm shift in artificial intelligence, with growing evidence supporting the efficacy of LLMs in diagnostic tasks. Despite the increasing attention in this field, a holistic view is still lacking. Many critical aspects remain unclear, such as the diseases and clinical data to which LLMs have been applied, the LLM techniques employed, and the evaluation methods used. In this article, we perform a comprehensive review of LLM-based methods for disease diagnosis. Our review examines the existing literature across various dimensions, including disease types and associated clinical specialties, clinical data, LLM techniques, and evaluation methods. Additionally, we offer recommendations for applying and evaluating LLMs for diagnostic tasks. Furthermore, we assess the limitations of current research and discuss future directions. To our knowledge, this is the first comprehensive review for LLM-based disease diagnosis.

疾病诊断的大型语言模型:范围综述。
疾病自动诊断在临床实践中越来越有价值。大型语言模型(llm)的出现催化了人工智能的范式转变,越来越多的证据支持llm在诊断任务中的有效性。尽管这一领域受到越来越多的关注,但仍缺乏一个整体的观点。许多关键方面仍然不清楚,例如法学硕士应用的疾病和临床数据,所采用的法学硕士技术以及所使用的评估方法。在本文中,我们对基于法学的疾病诊断方法进行了全面的回顾。我们的综述从不同的维度考察了现有的文献,包括疾病类型和相关的临床专科、临床数据、法学硕士技术和评估方法。此外,我们还提供了应用和评估llm诊断任务的建议。此外,我们评估了当前研究的局限性,并讨论了未来的发展方向。据我们所知,这是第一个基于法学硕士的疾病诊断的综合综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信