Development of a deep learning-based automated diagnostic system (DLADS) for classifying mammographic lesions - a first large-scale multi-institutional clinical trial in Japan.
{"title":"Development of a deep learning-based automated diagnostic system (DLADS) for classifying mammographic lesions - a first large-scale multi-institutional clinical trial in Japan.","authors":"Takeshi Yamaguchi, Yoichi Koyama, Kenichi Inoue, Kanako Ban, Koichi Hirokaga, Yuka Kujiraoka, Yuko Okanami, Norimitsu Shinohara, Hiroko Tsunoda, Takayoshi Uematsu, Hirofumi Mukai","doi":"10.1007/s12282-025-01741-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recently, western countries have built evidence on mammographic artificial Intelligence-computer-aided diagnosis (AI-CADx) systems; however, their effectiveness has not yet been sufficiently validated in Japanese women. In this study, we aimed to establish a Japanese mammographic AI-CADx system for the first time.</p><p><strong>Methods: </strong>We retrospectively collected screening or diagnostic mammograms from 63 institutions in Japan. We then randomly divided the images into training, validation, and test datasets in a balanced ratio of 8:1:1 on a case-level basis. The gold standard of annotation for the AI-CADx system is mammographic findings based on pathologic references. The AI-CADx system was developed using SE-ResNet modules and a sliding window algorithm. A cut-off concentration gradient of the heatmap image was set at 15%. The AI-CADx system was considered accurate if it detected the presence of a malignant lesion in a breast cancer mammogram. The primary endpoint of the AI-CADx system was defined as a sensitivity and specificity of over 80% for breast cancer diagnosis in the test dataset.</p><p><strong>Results: </strong>We collected 20,638 mammograms from 11,450 Japanese women with a median age of 55 years. The mammograms included 5019 breast cancer (24.3%), 5026 benign (24.4%), and 10,593 normal (51.3%) mammograms. In the test dataset of 2059 mammograms, the AI-CADx system achieved a sensitivity of 83.5% and a specificity of 84.7% for breast cancer diagnosis. The AUC in the test dataset was 0.841 (DeLong 95% CI; 0.822-0.859). The Accuracy was almost consistent independent of breast density, mammographic findings, type of cancer, and mammography vendors (AUC (range); 0.639-0.906).</p><p><strong>Conclusions: </strong>The developed Japanese mammographic AI-CADx system diagnosed breast cancer with a pre-specified sensitivity and specificity. We are planning a prospective study to validate the breast cancer diagnostic performance of Japanese physicians using this AI-CADx system as a second reader.</p><p><strong>Trial registration: </strong>UMIN, trial number UMIN000039009. Registered 26 December 2019, https://www.umin.ac.jp/ctr/.</p>","PeriodicalId":520574,"journal":{"name":"Breast cancer (Tokyo, Japan)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast cancer (Tokyo, Japan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12282-025-01741-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Recently, western countries have built evidence on mammographic artificial Intelligence-computer-aided diagnosis (AI-CADx) systems; however, their effectiveness has not yet been sufficiently validated in Japanese women. In this study, we aimed to establish a Japanese mammographic AI-CADx system for the first time.
Methods: We retrospectively collected screening or diagnostic mammograms from 63 institutions in Japan. We then randomly divided the images into training, validation, and test datasets in a balanced ratio of 8:1:1 on a case-level basis. The gold standard of annotation for the AI-CADx system is mammographic findings based on pathologic references. The AI-CADx system was developed using SE-ResNet modules and a sliding window algorithm. A cut-off concentration gradient of the heatmap image was set at 15%. The AI-CADx system was considered accurate if it detected the presence of a malignant lesion in a breast cancer mammogram. The primary endpoint of the AI-CADx system was defined as a sensitivity and specificity of over 80% for breast cancer diagnosis in the test dataset.
Results: We collected 20,638 mammograms from 11,450 Japanese women with a median age of 55 years. The mammograms included 5019 breast cancer (24.3%), 5026 benign (24.4%), and 10,593 normal (51.3%) mammograms. In the test dataset of 2059 mammograms, the AI-CADx system achieved a sensitivity of 83.5% and a specificity of 84.7% for breast cancer diagnosis. The AUC in the test dataset was 0.841 (DeLong 95% CI; 0.822-0.859). The Accuracy was almost consistent independent of breast density, mammographic findings, type of cancer, and mammography vendors (AUC (range); 0.639-0.906).
Conclusions: The developed Japanese mammographic AI-CADx system diagnosed breast cancer with a pre-specified sensitivity and specificity. We are planning a prospective study to validate the breast cancer diagnostic performance of Japanese physicians using this AI-CADx system as a second reader.
Trial registration: UMIN, trial number UMIN000039009. Registered 26 December 2019, https://www.umin.ac.jp/ctr/.