Transfer Learning-Assisted SERS: Predicting Molecular Identity and Concentration in Mixtures Using Pure Compound Spectra.

IF 16.9
Emily Xi Tan, Jaslyn Ru Ting Chen, Desmond Wei Cheng Pang, Nguan Soon Tan, In Yee Phang, Xing Yi Ling
{"title":"Transfer Learning-Assisted SERS: Predicting Molecular Identity and Concentration in Mixtures Using Pure Compound Spectra.","authors":"Emily Xi Tan, Jaslyn Ru Ting Chen, Desmond Wei Cheng Pang, Nguan Soon Tan, In Yee Phang, Xing Yi Ling","doi":"10.1002/anie.202508717","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying and quantifying compounds in unknown mixtures represents the ultimate goal of surface-enhanced Raman scattering (SERS) spectroscopy but remains a significant challenge in real-world applications. Existing machine learning-driven SERS methods are limited by their reliance on prior knowledge of mixture composition, while time-consuming experimental testing of all possibilities is not feasible. We integrate the molecular specificity of SERS with an adaptive transfer learning (TL) strategy to sequentially identify and quantify carnitine components in 11 unknown binary, ternary, and quaternary multicarnitine mixtures, achieving 100% identification accuracy and a mean quantitation error of only 3%. All models are trained solely on pure compound spectral data, enabling scalable, qualitative, and quantitative analysis of complex, unseen multiplex spectra-without requiring costly and time-consuming training data collection for every possible mixture. This predictive transfer learning-driven approach marks a transformative leap for practical SERS applications, allowing accurate analysis of complex mixtures without prior knowledge of components or ratios.</p>","PeriodicalId":520556,"journal":{"name":"Angewandte Chemie (International ed. in English)","volume":" ","pages":"e202508717"},"PeriodicalIF":16.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (International ed. in English)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/anie.202508717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying and quantifying compounds in unknown mixtures represents the ultimate goal of surface-enhanced Raman scattering (SERS) spectroscopy but remains a significant challenge in real-world applications. Existing machine learning-driven SERS methods are limited by their reliance on prior knowledge of mixture composition, while time-consuming experimental testing of all possibilities is not feasible. We integrate the molecular specificity of SERS with an adaptive transfer learning (TL) strategy to sequentially identify and quantify carnitine components in 11 unknown binary, ternary, and quaternary multicarnitine mixtures, achieving 100% identification accuracy and a mean quantitation error of only 3%. All models are trained solely on pure compound spectral data, enabling scalable, qualitative, and quantitative analysis of complex, unseen multiplex spectra-without requiring costly and time-consuming training data collection for every possible mixture. This predictive transfer learning-driven approach marks a transformative leap for practical SERS applications, allowing accurate analysis of complex mixtures without prior knowledge of components or ratios.

迁移学习辅助SERS:使用纯化合物光谱预测混合物中的分子身份和浓度。
识别和定量未知混合物中的化合物是表面增强拉曼散射(SERS)光谱的最终目标,但在实际应用中仍然是一个重大挑战。现有的机器学习驱动的SERS方法依赖于混合物成分的先验知识,而对所有可能性进行耗时的实验测试是不可行的。我们将SERS的分子特异性与自适应迁移学习策略相结合,在11种未知的二元、三元和四元多元卡尼汀混合物中依次识别和定量卡尼汀成分,鉴定准确率达到100%,平均定量误差仅为3%。所有模型都只在纯复合光谱数据上进行训练,能够对复杂的、看不见的多路光谱进行可扩展的、定性的和定量的分析,而不需要为每一种可能的混合物收集昂贵和耗时的训练数据。这种预测迁移学习驱动的方法标志着实际SERS应用的变革飞跃,允许在不事先了解成分或比率的情况下对复杂混合物进行准确分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信