Nader Ameli, Jaya Verma, Beth Muthoni Irungu, Sepideh Aliasghari, Andrei Shishkin, Allan Matthews, Saurav Goel
{"title":"Design and development of a novel polymer coating system with exceptional creep resistance.","authors":"Nader Ameli, Jaya Verma, Beth Muthoni Irungu, Sepideh Aliasghari, Andrei Shishkin, Allan Matthews, Saurav Goel","doi":"10.1038/s44296-025-00063-x","DOIUrl":null,"url":null,"abstract":"<p><p>Polymer coatings often suffer from poor mechanical properties, including low strength and modulus, making them prone to creep failure under minimal loads. To address these challenges, this study introduces a novel polyurethane (PU) coating reinforced with 4 wt% hollow ceramic microspheres (HCM) coated with a TiO₂ shell (HCM@TiO₂). The modified coating exhibited a 111% increase in nanoindentation hardness, along with significant reductions in creep displacement (31%), indentation creep rate (19%), and creep strain rate sensitivity (28%) compared to the base PU. In contrast, a second additive, solid silica nanospheres with TiO₂ shells (SSN@TiO₂), did not improve mechanical performance and even increased creep displacement by 31%, likely due to polymer chain sliding. Notably, the HCM@TiO₂ coating maintained and even improved its creep resistance under higher loads. These findings suggest that HCM@TiO₂-enhanced coatings could be highly beneficial for applications requiring resistance to high-cycle creep-fatigue failure.</p>","PeriodicalId":520010,"journal":{"name":"Npj materials sustainability","volume":"3 1","pages":"21"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12208877/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npj materials sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44296-025-00063-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Polymer coatings often suffer from poor mechanical properties, including low strength and modulus, making them prone to creep failure under minimal loads. To address these challenges, this study introduces a novel polyurethane (PU) coating reinforced with 4 wt% hollow ceramic microspheres (HCM) coated with a TiO₂ shell (HCM@TiO₂). The modified coating exhibited a 111% increase in nanoindentation hardness, along with significant reductions in creep displacement (31%), indentation creep rate (19%), and creep strain rate sensitivity (28%) compared to the base PU. In contrast, a second additive, solid silica nanospheres with TiO₂ shells (SSN@TiO₂), did not improve mechanical performance and even increased creep displacement by 31%, likely due to polymer chain sliding. Notably, the HCM@TiO₂ coating maintained and even improved its creep resistance under higher loads. These findings suggest that HCM@TiO₂-enhanced coatings could be highly beneficial for applications requiring resistance to high-cycle creep-fatigue failure.