Clinical Application of Large Language Models in Generating Pathologic Images.

IF 3.3 Q2 ONCOLOGY
JCO Clinical Cancer Informatics Pub Date : 2025-07-01 Epub Date: 2025-07-02 DOI:10.1200/CCI-24-00267
Lingxuan Zhu, Yancheng Lai, Na Ta, Weiming Mou, Rodolfo Montironi, Katrina Collins, Kenneth A Iczkowski, Fei Chen, Antonio Lopez-Beltran, Rui Zhou, Huang He, Gyan Pareek, Elias Hyams, Dragan Golijanin, Sari Khaleel, Borivoj Golijanin, Kamil Malshy, Alessia Cimadamore, Xiang Ni, Tao Yang, Liang Cheng, Rui Chen
{"title":"Clinical Application of Large Language Models in Generating Pathologic Images.","authors":"Lingxuan Zhu, Yancheng Lai, Na Ta, Weiming Mou, Rodolfo Montironi, Katrina Collins, Kenneth A Iczkowski, Fei Chen, Antonio Lopez-Beltran, Rui Zhou, Huang He, Gyan Pareek, Elias Hyams, Dragan Golijanin, Sari Khaleel, Borivoj Golijanin, Kamil Malshy, Alessia Cimadamore, Xiang Ni, Tao Yang, Liang Cheng, Rui Chen","doi":"10.1200/CCI-24-00267","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study investigates the potential of DALL·E 3, an artificial intelligence (AI) model, to generate synthetic pathologic images of prostate cancer (PCa) at varying Gleason grades. The aim is to enhance medical education and research resources, particularly by providing diverse case studies and valuable teaching tools.</p><p><strong>Methods: </strong>This study uses DALL·E 3 to generate 30 synthetic images of PCa across various Gleason grades, guided by standard Gleason pattern descriptions. Nine uropathologists evaluated these images for realism and accuracy compared with actual hematoxylin and eosin (H&E)-stained slides using a scoring system.</p><p><strong>Results: </strong>The average realism and representativeness scores were 6.04 and 6.17, indicating satisfactory quality. Scores varied significantly among Gleason patterns (<i>P</i> < .05), with Gleason 5 images achieving the highest scores and accurately depicting critical pathologic characteristics. Limitations included a lack of fine nuclear detail, essential for identifying malignancy, which may affect the images' diagnostic utility.</p><p><strong>Conclusion: </strong>DALL·E 3 shows promise in generating customized pathologic images that can aid in education and resource expansion within pathology. However, ethical concerns, such as the potential misuse of AI-generated images for data falsification, highlight the need for responsible oversight. Collaboration between technology firms and pathologists is essential for the ethical integration of AI in pathology practices.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":"9 ","pages":"e2400267"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI-24-00267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This study investigates the potential of DALL·E 3, an artificial intelligence (AI) model, to generate synthetic pathologic images of prostate cancer (PCa) at varying Gleason grades. The aim is to enhance medical education and research resources, particularly by providing diverse case studies and valuable teaching tools.

Methods: This study uses DALL·E 3 to generate 30 synthetic images of PCa across various Gleason grades, guided by standard Gleason pattern descriptions. Nine uropathologists evaluated these images for realism and accuracy compared with actual hematoxylin and eosin (H&E)-stained slides using a scoring system.

Results: The average realism and representativeness scores were 6.04 and 6.17, indicating satisfactory quality. Scores varied significantly among Gleason patterns (P < .05), with Gleason 5 images achieving the highest scores and accurately depicting critical pathologic characteristics. Limitations included a lack of fine nuclear detail, essential for identifying malignancy, which may affect the images' diagnostic utility.

Conclusion: DALL·E 3 shows promise in generating customized pathologic images that can aid in education and resource expansion within pathology. However, ethical concerns, such as the potential misuse of AI-generated images for data falsification, highlight the need for responsible oversight. Collaboration between technology firms and pathologists is essential for the ethical integration of AI in pathology practices.

大型语言模型在病理图像生成中的临床应用。
目的:本研究探讨人工智能(AI)模型DALL·e3生成不同Gleason分级前列腺癌(PCa)合成病理图像的潜力。其目的是加强医学教育和研究资源,特别是通过提供各种案例研究和有价值的教学工具。方法:本研究使用DALL·e3在标准Gleason模式描述的指导下,生成30张不同Gleason等级的PCa合成图像。9名泌尿病理学家使用评分系统评估这些图像与实际苏木精和伊红(H&E)染色的载玻片的真实感和准确性。结果:平均现实性和代表性得分分别为6.04分和6.17分,质量较好。不同Gleason影像的评分差异有统计学意义(P < 0.05),其中Gleason 5影像得分最高,能准确描绘关键病理特征。局限性包括缺乏精细的核细节,这对于识别恶性肿瘤至关重要,这可能会影响图像的诊断效用。结论:DALL·e3有望生成定制的病理图像,有助于病理学的教育和资源扩展。然而,道德问题,例如可能滥用人工智能生成的图像来伪造数据,突出了负责任监督的必要性。技术公司和病理学家之间的合作对于人工智能在病理学实践中的伦理整合至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
4.80%
发文量
190
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信