{"title":"Novel ANKRD17 variants implicate synaptic and mitochondrial disruptions in intellectual disability and autism spectrum disorder.","authors":"Dan Xia, Yuanyuan Xu, Zhanwen He, Rui Chen, Xiaoqin Xiao, Xiaojuan Li, Kewen Deng, Shuyun Deng, Lina Zhang, Jieming Zhang, Xiaofang Peng, Zhe Meng, Ruohao Wu, Dilong Wang, Zulin Liu, Hui Chen, Lu Li, Liyang Liang","doi":"10.1186/s11689-025-09619-3","DOIUrl":null,"url":null,"abstract":"<p><p>ANKRD17 has recently been implicated in intellectual disability (ID) and autism spectrum disorder (ASD); however, the underlying molecular mechanisms remain unclear. Using trio whole-exome sequencing (Trio-WES) and chromosomal microarray analysis (CMA), we identified two unrelated cases with novel de novo heterozygous ANKRD17 variants. Case 1 describes a fetus with multiple congenital anomalies, where genetic analysis revealed a microdeletion at 4q13.3 truncating the ANKRD17 gene. Case 2 involves a 12-year-old male presenting with mild ID and progressive social impairments, associated with a NM_032217.5: c.1252 C > T (p.Arg418*) variation in ANKRD17. Our study highlighted in mouse models an association between Ankrd17 haploinsufficiency and deficits in social behavior, spatial learning and memory, as well as elevated anxiety. Furthermore, our studies suggest dysregulation of synaptic proteins and mitochondrial function, along with impaired neural circuits following Ankrd17 knockdown. These results expand the genetic and phenotypic spectrum of ANKRD17-related disorders, underscore the critical role of mitochondrial dysfunction in the pathophysiology of ANKRD17-related ID and ASD.</p>","PeriodicalId":16530,"journal":{"name":"Journal of Neurodevelopmental Disorders","volume":"17 1","pages":"36"},"PeriodicalIF":4.1000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12219137/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurodevelopmental Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s11689-025-09619-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
ANKRD17 has recently been implicated in intellectual disability (ID) and autism spectrum disorder (ASD); however, the underlying molecular mechanisms remain unclear. Using trio whole-exome sequencing (Trio-WES) and chromosomal microarray analysis (CMA), we identified two unrelated cases with novel de novo heterozygous ANKRD17 variants. Case 1 describes a fetus with multiple congenital anomalies, where genetic analysis revealed a microdeletion at 4q13.3 truncating the ANKRD17 gene. Case 2 involves a 12-year-old male presenting with mild ID and progressive social impairments, associated with a NM_032217.5: c.1252 C > T (p.Arg418*) variation in ANKRD17. Our study highlighted in mouse models an association between Ankrd17 haploinsufficiency and deficits in social behavior, spatial learning and memory, as well as elevated anxiety. Furthermore, our studies suggest dysregulation of synaptic proteins and mitochondrial function, along with impaired neural circuits following Ankrd17 knockdown. These results expand the genetic and phenotypic spectrum of ANKRD17-related disorders, underscore the critical role of mitochondrial dysfunction in the pathophysiology of ANKRD17-related ID and ASD.
期刊介绍:
Journal of Neurodevelopmental Disorders is an open access journal that integrates current, cutting-edge research across a number of disciplines, including neurobiology, genetics, cognitive neuroscience, psychiatry and psychology. The journal’s primary focus is on the pathogenesis of neurodevelopmental disorders including autism, fragile X syndrome, tuberous sclerosis, Turner Syndrome, 22q Deletion Syndrome, Prader-Willi and Angelman Syndrome, Williams syndrome, lysosomal storage diseases, dyslexia, specific language impairment and fetal alcohol syndrome. With the discovery of specific genes underlying neurodevelopmental syndromes, the emergence of powerful tools for studying neural circuitry, and the development of new approaches for exploring molecular mechanisms, interdisciplinary research on the pathogenesis of neurodevelopmental disorders is now increasingly common. Journal of Neurodevelopmental Disorders provides a unique venue for researchers interested in comparing and contrasting mechanisms and characteristics related to the pathogenesis of the full range of neurodevelopmental disorders, sharpening our understanding of the etiology and relevant phenotypes of each condition.