Exploring Inflammatory Bowel Disease Discourse on Reddit Throughout the COVID-19 Pandemic Using OpenAI's GPT-3.5 Turbo Model: Classification Model Validation and Case Study.
Tyler Babinski, Sara Karley, Marita Cooper, Salma Shaik, Y Ken Wang
{"title":"Exploring Inflammatory Bowel Disease Discourse on Reddit Throughout the COVID-19 Pandemic Using OpenAI's GPT-3.5 Turbo Model: Classification Model Validation and Case Study.","authors":"Tyler Babinski, Sara Karley, Marita Cooper, Salma Shaik, Y Ken Wang","doi":"10.2196/53332","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Inflammatory bowel disease (IBD) is a chronic autoimmune disorder with an increasing prevalence in the general population. Internet-based communities have become vital for communication among patients with IBD, especially throughout the COVID-19 pandemic. However, these internet-based patient-to-patient communications remain largely underexplored.</p><p><strong>Objective: </strong>This study aims to analyze community posts from 3 of the largest IBD support groups on Reddit between March 1, 2020, and December 31, 2022, using a pretrained transformer model, and to validate the classification system's results via comparison to human scoring.</p><p><strong>Methods: </strong>We collected posts (N=53,333) from subreddits r/CrohnsDisease, r/UlcerativeColitis, and r/IBD and classified them using OpenAI's GPT-3.5 Turbo model to determine sentiment, categorize topics, and identify demographic information and mentions of the COVID-19 pandemic. A subset of posts (n=397) was manually scored to measure interrater agreement between human raters and the GPT-3.5 Turbo model.</p><p><strong>Results: </strong>Fleiss κ and Gwet AC1 coefficients indicated a high level of agreement between raters, with values ranging from 0.53 to 0.91. The raters demonstrated almost perfect agreement on the classification of gender, with a Fleiss κ of 0.91 (P<.001). Medications (14,909/53,333) and symptoms (14,939/53,333) emerged as the most discussed topics, and most posts conveyed a neutral sentiment. While most users did not disclose their age, those who did primarily belonged to the 20-29 years (2392/4828) and 30-39 years (859/4828) age groups. Based on self-reported gender, we identified 1509 men and 1502 women among our IBD Reddit users. When comparing the users on the IBD subreddits to the general IBD population, there was a significant difference in gender distribution (N=3,090,011; χ<sup>2</sup><sub>2</sub>=69.53; P<.001; φ<0.001). After an initial spike in posts within the first month, most posts did not reference the COVID-19 pandemic.</p><p><strong>Conclusions: </strong>Our study showcases the potential of generative pretrained transformer models in processing and extracting insights from medical social media data. Future research can benefit from further subanalyses of our validated dataset or use OpenAI's model to analyze social media data for other conditions, particularly those for which patient experiences are challenging to collect.</p>","PeriodicalId":16337,"journal":{"name":"Journal of Medical Internet Research","volume":"27 ","pages":"e53332"},"PeriodicalIF":5.8000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12271966/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Internet Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/53332","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Inflammatory bowel disease (IBD) is a chronic autoimmune disorder with an increasing prevalence in the general population. Internet-based communities have become vital for communication among patients with IBD, especially throughout the COVID-19 pandemic. However, these internet-based patient-to-patient communications remain largely underexplored.
Objective: This study aims to analyze community posts from 3 of the largest IBD support groups on Reddit between March 1, 2020, and December 31, 2022, using a pretrained transformer model, and to validate the classification system's results via comparison to human scoring.
Methods: We collected posts (N=53,333) from subreddits r/CrohnsDisease, r/UlcerativeColitis, and r/IBD and classified them using OpenAI's GPT-3.5 Turbo model to determine sentiment, categorize topics, and identify demographic information and mentions of the COVID-19 pandemic. A subset of posts (n=397) was manually scored to measure interrater agreement between human raters and the GPT-3.5 Turbo model.
Results: Fleiss κ and Gwet AC1 coefficients indicated a high level of agreement between raters, with values ranging from 0.53 to 0.91. The raters demonstrated almost perfect agreement on the classification of gender, with a Fleiss κ of 0.91 (P<.001). Medications (14,909/53,333) and symptoms (14,939/53,333) emerged as the most discussed topics, and most posts conveyed a neutral sentiment. While most users did not disclose their age, those who did primarily belonged to the 20-29 years (2392/4828) and 30-39 years (859/4828) age groups. Based on self-reported gender, we identified 1509 men and 1502 women among our IBD Reddit users. When comparing the users on the IBD subreddits to the general IBD population, there was a significant difference in gender distribution (N=3,090,011; χ22=69.53; P<.001; φ<0.001). After an initial spike in posts within the first month, most posts did not reference the COVID-19 pandemic.
Conclusions: Our study showcases the potential of generative pretrained transformer models in processing and extracting insights from medical social media data. Future research can benefit from further subanalyses of our validated dataset or use OpenAI's model to analyze social media data for other conditions, particularly those for which patient experiences are challenging to collect.
期刊介绍:
The Journal of Medical Internet Research (JMIR) is a highly respected publication in the field of health informatics and health services. With a founding date in 1999, JMIR has been a pioneer in the field for over two decades.
As a leader in the industry, the journal focuses on digital health, data science, health informatics, and emerging technologies for health, medicine, and biomedical research. It is recognized as a top publication in these disciplines, ranking in the first quartile (Q1) by Impact Factor.
Notably, JMIR holds the prestigious position of being ranked #1 on Google Scholar within the "Medical Informatics" discipline.