[NAD+ metabolism as a target for anti-aging].

Hitoshi Uchida, Takashi Nakagawa
{"title":"[NAD<sup>+</sup> metabolism as a target for anti-aging].","authors":"Hitoshi Uchida, Takashi Nakagawa","doi":"10.1254/fpj.24072","DOIUrl":null,"url":null,"abstract":"<p><p>Aging is a physiological process caused by various genetic and environmental factors. Recently, it has been proposed that the disturbance of the nutritional-metabolic sensing pathway is one of the aging characteristics. In particular, nicotinamide adenine dinucleotide (NAD<sup>+</sup>) plays an important role in this pathway and is considered the regulator of aging. NAD<sup>+</sup> regulates an energy metabolism as a co-factor and is also involved in various biological processes including transcription, stress responses, DNA repair, inflammatory responses as well as post-transcriptional modifications, as a substrate for sirtuins, poly ADP-ribose polymerase (PARP), and CD38. With age, DNA damage and chronic inflammation increase in organs, resulting in overconsumption of NAD<sup>+</sup> via PARP and CD38. The reduced NAD<sup>+</sup> levels decrease the activity of sirtuins and PARPs and impair energy metabolism, ultimately leading to aging and aging-related diseases. However, the precise metabolism of NAD<sup>+</sup> in vivo and the mechanism of how NAD<sup>+</sup> regulates aging remain elusive. Moreover, the clinical application of NAD<sup>+</sup> supplementation therapy is still under development. In this review, we overview the NAD<sup>+</sup> metabolism and its relation to aging. In addition, we describe the current issue and perspective of NAD<sup>+</sup> supplementation therapy to promote a healthy lifespan.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 4","pages":"268-273"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia Pharmacologica Japonica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1254/fpj.24072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aging is a physiological process caused by various genetic and environmental factors. Recently, it has been proposed that the disturbance of the nutritional-metabolic sensing pathway is one of the aging characteristics. In particular, nicotinamide adenine dinucleotide (NAD+) plays an important role in this pathway and is considered the regulator of aging. NAD+ regulates an energy metabolism as a co-factor and is also involved in various biological processes including transcription, stress responses, DNA repair, inflammatory responses as well as post-transcriptional modifications, as a substrate for sirtuins, poly ADP-ribose polymerase (PARP), and CD38. With age, DNA damage and chronic inflammation increase in organs, resulting in overconsumption of NAD+ via PARP and CD38. The reduced NAD+ levels decrease the activity of sirtuins and PARPs and impair energy metabolism, ultimately leading to aging and aging-related diseases. However, the precise metabolism of NAD+ in vivo and the mechanism of how NAD+ regulates aging remain elusive. Moreover, the clinical application of NAD+ supplementation therapy is still under development. In this review, we overview the NAD+ metabolism and its relation to aging. In addition, we describe the current issue and perspective of NAD+ supplementation therapy to promote a healthy lifespan.

[NAD+代谢作为抗衰老的靶标]。
衰老是多种遗传和环境因素共同作用下的生理过程。近年来,营养代谢感知通路的紊乱被认为是衰老的特征之一。特别是烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide, NAD+)在这一途径中起着重要作用,被认为是衰老的调节剂。NAD+作为辅助因子调节能量代谢,也参与多种生物过程,包括转录、应激反应、DNA修复、炎症反应以及转录后修饰,作为sirtuins、聚adp核糖聚合酶(PARP)和CD38的底物。随着年龄的增长,器官的DNA损伤和慢性炎症增加,导致通过PARP和CD38过量消耗NAD+。NAD+水平的降低降低了sirtuins和parp的活性,损害了能量代谢,最终导致衰老和衰老相关疾病。然而,NAD+在体内的确切代谢及其调控衰老的机制尚不清楚。此外,NAD+补充疗法的临床应用仍在开发中。本文就NAD+代谢及其与衰老的关系作一综述。此外,我们描述了NAD+补充治疗促进健康寿命的当前问题和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Folia Pharmacologica Japonica
Folia Pharmacologica Japonica Pharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
0.40
自引率
0.00%
发文量
132
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信