Mediators of maternal intergenerational epigenetic inheritance in mammals.

IF 3 4区 医学 Q2 GENETICS & HEREDITY
Christian Belton, Gavin Kelsey
{"title":"Mediators of maternal intergenerational epigenetic inheritance in mammals.","authors":"Christian Belton, Gavin Kelsey","doi":"10.1080/17501911.2025.2525749","DOIUrl":null,"url":null,"abstract":"<p><p>Experimental models and epidemiological data suggest that environmental factors, for example, adverse nutrition prior to conception, can lead to phenotypes in offspring of exposed parents in the absence of continued exposure. As a result these phenotypes have been described as epigentically inherited. The mechanistic basis for such phenomena has not been established in most cases. In this review, we consider possible contributing mechanisms for environmentaly induced epigenetic inheritance, with a focus on maternally transmitted effects and by comparing to paradigms of epigenetic inheritance with a clear mechanistic understanding. Genomic imprinting has provided an important conceptual framework for how the epigenetic states of parental germlines can determine allelic expression in offspring, yet, generally speaking, imprinted genes appear resilient to epigenetic disruption from altered parental environments. Metastable epialleles are environmentally sensitive and variably expressed loci that can impact organism phenotype, but the nature of any epigenetic marker at these loci transferred to offspring is unclear. Studies of examples across these forms of epigenetic inheritance show predominant effects are mediated by oocyte factors involved inreprogramming of the genome post-fertilization, rather than direct effects on gametic DNA methylation, with the exception of genomic imprinting. The potential contribution of additional oocyte chromatin features to the specific liability of phenotypic effector genes and their potential to persist through this reprogramming, however, remains to be investigated.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"1-9"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17501911.2025.2525749","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Experimental models and epidemiological data suggest that environmental factors, for example, adverse nutrition prior to conception, can lead to phenotypes in offspring of exposed parents in the absence of continued exposure. As a result these phenotypes have been described as epigentically inherited. The mechanistic basis for such phenomena has not been established in most cases. In this review, we consider possible contributing mechanisms for environmentaly induced epigenetic inheritance, with a focus on maternally transmitted effects and by comparing to paradigms of epigenetic inheritance with a clear mechanistic understanding. Genomic imprinting has provided an important conceptual framework for how the epigenetic states of parental germlines can determine allelic expression in offspring, yet, generally speaking, imprinted genes appear resilient to epigenetic disruption from altered parental environments. Metastable epialleles are environmentally sensitive and variably expressed loci that can impact organism phenotype, but the nature of any epigenetic marker at these loci transferred to offspring is unclear. Studies of examples across these forms of epigenetic inheritance show predominant effects are mediated by oocyte factors involved inreprogramming of the genome post-fertilization, rather than direct effects on gametic DNA methylation, with the exception of genomic imprinting. The potential contribution of additional oocyte chromatin features to the specific liability of phenotypic effector genes and their potential to persist through this reprogramming, however, remains to be investigated.

哺乳动物母系代际表观遗传的调节因子。
实验模型和流行病学数据表明,环境因素,例如受孕前的不良营养,在没有持续接触的情况下,可导致接触父母后代的表型。因此,这些表型被描述为表观遗传。在大多数情况下,这种现象的机制基础尚未确定。本文综述了环境诱导表观遗传的可能机制,重点讨论了母系遗传效应,并对环境诱导表观遗传的模式进行了比较,并对其机制有了明确的认识。基因组印迹为亲本生殖系的表观遗传状态如何决定后代的等位基因表达提供了一个重要的概念框架,然而,一般来说,印迹基因似乎对来自改变的亲本环境的表观遗传破坏具有弹性。亚稳态外显子是环境敏感和可变表达的位点,可以影响生物体表型,但这些位点上的任何表观遗传标记转移给后代的性质尚不清楚。对这些形式的表观遗传实例的研究表明,除了基因组印记外,主要影响是由参与受精后基因组重编程的卵母细胞因子介导的,而不是直接影响配子DNA甲基化。然而,额外的卵母细胞染色质特征对表型效应基因的特定倾向及其通过这种重编程持续存在的潜力的潜在贡献仍有待研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Epigenomics
Epigenomics GENETICS & HEREDITY-
CiteScore
5.80
自引率
2.60%
发文量
95
审稿时长
>12 weeks
期刊介绍: Epigenomics provides the forum to address the rapidly progressing research developments in this ever-expanding field; to report on the major challenges ahead and critical advances that are propelling the science forward. The journal delivers this information in concise, at-a-glance article formats – invaluable to a time constrained community. Substantial developments in our current knowledge and understanding of genomics and epigenetics are constantly being made, yet this field is still in its infancy. Epigenomics provides a critical overview of the latest and most significant advances as they unfold and explores their potential application in the clinical setting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信