{"title":"A New Class of Vitamin K Analogues Containing the Side Chain of Retinoic Acid Have Enhanced Activity for Inducing Neuronal Differentiation.","authors":"Yoshihisa Hirota, Taiki Sato, Rina Watanabe, Kazuki Takeda, Sho Sano, Satoshi Asano, Yuki Shibahashi, Yumi Yasuda, Yuta Takagi, Yutaro Yamashita, Wu YuXin, Mikino Arakawa, Yuri Maitani, Vannessa Lawai, Kurumi Nakagawa, Natsuko Furukawa, Atsuko Takeuchi, Chisato Tode, Maya Kamao, Akimori Wada, Zainab Ngaini, Yoshitomo Suhara","doi":"10.1021/acschemneuro.5c00111","DOIUrl":null,"url":null,"abstract":"<p><p>Vitamin K, primarily known for its roles in coagulation and bone metabolism, has recently been implicated in neuroprotection and neuronal differentiation, particularly via its bioactive form, menaquinone-4 (MK-4). Here, we synthesized 12 vitamin K compounds with retinoic acid-conjugated side chains and methyl ester modifications to enhance neuroactive properties. Among these, compound <b>7</b> demonstrated superior stability, robust transcriptional activation via steroid and xenobiotic receptor and retinoic acid receptor, and efficient induction of neuronal differentiation in mouse neural progenitor cells. Mechanistic analyzes revealed that Vitamin K activates metabotropic glutamate receptor 1 (mGluR1). Docking simulations confirmed its stronger mGluR1-binding affinity compared to MK-4. In vivo pharmacokinetics in C57BL/6 mice showed effective blood-brain barrier penetration, with compound <b>7</b> metabolizing into MK-4 over time. These findings establish compound <b>7</b> as a promising candidate for neurodegenerative disease therapies through its unique neuroactive mechanisms.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.5c00111","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Vitamin K, primarily known for its roles in coagulation and bone metabolism, has recently been implicated in neuroprotection and neuronal differentiation, particularly via its bioactive form, menaquinone-4 (MK-4). Here, we synthesized 12 vitamin K compounds with retinoic acid-conjugated side chains and methyl ester modifications to enhance neuroactive properties. Among these, compound 7 demonstrated superior stability, robust transcriptional activation via steroid and xenobiotic receptor and retinoic acid receptor, and efficient induction of neuronal differentiation in mouse neural progenitor cells. Mechanistic analyzes revealed that Vitamin K activates metabotropic glutamate receptor 1 (mGluR1). Docking simulations confirmed its stronger mGluR1-binding affinity compared to MK-4. In vivo pharmacokinetics in C57BL/6 mice showed effective blood-brain barrier penetration, with compound 7 metabolizing into MK-4 over time. These findings establish compound 7 as a promising candidate for neurodegenerative disease therapies through its unique neuroactive mechanisms.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research