Photocatalytic Diselenide Contraction as a Tool for Site-Selective Isosteric Ubiquitylation

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Herwig Weissinger, Moritz Urschbach, Luca Ferrari, Sascha Martens, Christian F. W. Becker
{"title":"Photocatalytic Diselenide Contraction as a Tool for Site-Selective Isosteric Ubiquitylation","authors":"Herwig Weissinger,&nbsp;Moritz Urschbach,&nbsp;Luca Ferrari,&nbsp;Sascha Martens,&nbsp;Christian F. W. Becker","doi":"10.1002/psc.70037","DOIUrl":null,"url":null,"abstract":"<p>Ubiquitylation is a highly conserved post-translational modification (PTM) in eukaryotes, which serves as a critical regulatory mechanism for protein homeostasis, cellular transport, signal transduction pathways, and numerous other functions. The biological function of ubiquitylation is dictated predominantly by the topology of its linkage. Deciphering ubiquitin's complex biochemistry necessitates novel synthetic methods that deliver well-defined, biosimilar ubiquitylation. To this end, a semisynthetic strategy relying on the recombinant expression of ubiquitin combined with chemoselective photocatalytic diselenide contraction (PDC) was established to enable site-selective biomimetic selenalysine-linked ubiquitylation. The modification of ubiquitin with a C-terminal selenol was fine-tuned to avoid hydrolysis. The conditions of the PDC reaction, such as solvent composition, phosphine concentration, and irradiation, were optimized for efficient ubiquitylation of a Tau F derived peptide. Furthermore, it was demonstrated that the selenalysine linkage undergoes efficient cleavage by deubiquitylating enzymes, comparable to the native isopeptide linkage. The presented method expands the toolbox of site-selective ubiquitylation techniques. It is tolerant to many functional groups and will help to further elucidate the complexities of ubiquitylation.</p>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"31 8","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/psc.70037","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Peptide Science","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/psc.70037","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ubiquitylation is a highly conserved post-translational modification (PTM) in eukaryotes, which serves as a critical regulatory mechanism for protein homeostasis, cellular transport, signal transduction pathways, and numerous other functions. The biological function of ubiquitylation is dictated predominantly by the topology of its linkage. Deciphering ubiquitin's complex biochemistry necessitates novel synthetic methods that deliver well-defined, biosimilar ubiquitylation. To this end, a semisynthetic strategy relying on the recombinant expression of ubiquitin combined with chemoselective photocatalytic diselenide contraction (PDC) was established to enable site-selective biomimetic selenalysine-linked ubiquitylation. The modification of ubiquitin with a C-terminal selenol was fine-tuned to avoid hydrolysis. The conditions of the PDC reaction, such as solvent composition, phosphine concentration, and irradiation, were optimized for efficient ubiquitylation of a Tau F derived peptide. Furthermore, it was demonstrated that the selenalysine linkage undergoes efficient cleavage by deubiquitylating enzymes, comparable to the native isopeptide linkage. The presented method expands the toolbox of site-selective ubiquitylation techniques. It is tolerant to many functional groups and will help to further elucidate the complexities of ubiquitylation.

Abstract Image

光催化二烯醛收缩作为位点选择性等构泛素化的工具
泛素化是真核生物中高度保守的翻译后修饰(PTM),在蛋白质稳态、细胞转运、信号转导途径和许多其他功能中起着关键的调节机制作用。泛素化的生物学功能主要由其连接的拓扑结构决定。破译泛素的复杂生物化学需要新的合成方法,提供明确的,生物类似的泛素化。为此,建立了一种依赖于泛素重组表达结合化学选择性光催化二硒酰收缩(PDC)的半合成策略,以实现位点选择性仿生硒化赖氨酸连接的泛素化。用c端硒醇修饰泛素以避免水解。对PDC反应的溶剂组成、磷化氢浓度和辐照等条件进行了优化,以实现Tau F衍生肽的高效泛素化。此外,硒化赖氨酸链可以被去泛素化酶有效地切割,与天然的异肽链相当。提出的方法扩展了选择性位点泛素化技术的工具箱。它对许多官能团具有耐受性,将有助于进一步阐明泛素化的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Peptide Science
Journal of Peptide Science 生物-分析化学
CiteScore
3.40
自引率
4.80%
发文量
83
审稿时长
1.7 months
期刊介绍: The official Journal of the European Peptide Society EPS The Journal of Peptide Science is a cooperative venture of John Wiley & Sons, Ltd and the European Peptide Society, undertaken for the advancement of international peptide science by the publication of original research results and reviews. The Journal of Peptide Science publishes three types of articles: Research Articles, Rapid Communications and Reviews. The scope of the Journal embraces the whole range of peptide chemistry and biology: the isolation, characterisation, synthesis properties (chemical, physical, conformational, pharmacological, endocrine and immunological) and applications of natural peptides; studies of their analogues, including peptidomimetics; peptide antibiotics and other peptide-derived complex natural products; peptide and peptide-related drug design and development; peptide materials and nanomaterials science; combinatorial peptide research; the chemical synthesis of proteins; and methodological advances in all these areas. The spectrum of interests is well illustrated by the published proceedings of the regular international Symposia of the European, American, Japanese, Australian, Chinese and Indian Peptide Societies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信