{"title":"Enhancing Brain Tumor Classification Through Optimal Kernel Selection With \n \n \n \n GL\n 1\n \n \n $$ {GL}_1 $$\n -Regularization","authors":"Otmane Mallouk, Nour-Eddine Joudar, Mohamed Ettaouil","doi":"10.1002/ima.70150","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Brain tumors, known for their rapid and aggressive growth, are among the most serious and life-threatening diseases worldwide. This makes the development of automated detection methods essential for saving lives. Deep transfer learning has become a highly effective approach for automating brain tumor classification and medical imaging, offering promising solutions on a global scale. However, leveraging a pretrained model typically involves special adaptations. Existing adaptation methods involve freezing or fine-tuning specific layers without considering the contribution level of individual kernels. This work aims to extend the concept of layer-level contributions to the kernel level by employing an adaptive optimization model. Indeed, this paper presents a novel optimization model that incorporates group lasso regularization to control which kernels are frozen and which are fine-tuned. The proposed model selects optimal source features that contribute to the target task. Additionally, the proposed optimization model is solved utilizing proximal gradient descent. The method was evaluated on a three-class brain tumor classification task, distinguishing between glioma, meningioma, and pituitary tumors, using a medical MRI dataset. Several experiments confirm the efficacy of our model in identifying both frozen and fine-tuned kernels, thereby improving data classification. Subsequently, the results obtained are compared with those of state-of-the-art transfer learning methods for comprehensive comparison.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70150","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Brain tumors, known for their rapid and aggressive growth, are among the most serious and life-threatening diseases worldwide. This makes the development of automated detection methods essential for saving lives. Deep transfer learning has become a highly effective approach for automating brain tumor classification and medical imaging, offering promising solutions on a global scale. However, leveraging a pretrained model typically involves special adaptations. Existing adaptation methods involve freezing or fine-tuning specific layers without considering the contribution level of individual kernels. This work aims to extend the concept of layer-level contributions to the kernel level by employing an adaptive optimization model. Indeed, this paper presents a novel optimization model that incorporates group lasso regularization to control which kernels are frozen and which are fine-tuned. The proposed model selects optimal source features that contribute to the target task. Additionally, the proposed optimization model is solved utilizing proximal gradient descent. The method was evaluated on a three-class brain tumor classification task, distinguishing between glioma, meningioma, and pituitary tumors, using a medical MRI dataset. Several experiments confirm the efficacy of our model in identifying both frozen and fine-tuned kernels, thereby improving data classification. Subsequently, the results obtained are compared with those of state-of-the-art transfer learning methods for comprehensive comparison.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.