Coumarin-Based Allosteric Inhibition of PTP1B: A Potential Strategy for Metabolic Regulation

IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Emadeldin M. Kamel, Doaa A. Abdelrheem, Faris F. Aba Alkhayl, Fahad M. Alshabrmi, May Bin-Jumah, Abdullah S. Alawam, Al Mokhtar Lamsabhi
{"title":"Coumarin-Based Allosteric Inhibition of PTP1B: A Potential Strategy for Metabolic Regulation","authors":"Emadeldin M. Kamel,&nbsp;Doaa A. Abdelrheem,&nbsp;Faris F. Aba Alkhayl,&nbsp;Fahad M. Alshabrmi,&nbsp;May Bin-Jumah,&nbsp;Abdullah S. Alawam,&nbsp;Al Mokhtar Lamsabhi","doi":"10.1002/jmr.70006","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Protein Tyrosine Phosphatase 1B (PTP1B) is a key metabolic regulator and a promising therapeutic target for type 2 diabetes and obesity. This study evaluated the inhibitory potential of four coumarins—Bergapten, Imperatorin, Xanthotoxol, and Isopimpinellin, isolated from <i>Ammi majus</i>—through <i>in silico</i> and in vitro approaches. Molecular docking and molecular dynamics (MD) simulations identified Bergapten and Imperatorin as the most stable binders, forming key π–π stacking interactions with Phe280 and Phe196. Principal Energy Landscape (PEL) analysis further confirmed their stable binding conformations, while MM/PBSA calculations ranked Bergapten (−17.21 ± 0.80 kcal/mol) and Imperatorin (−12.76 ± 2.99 kcal/mol) as the strongest binders. ADMET analysis indicated high gastrointestinal absorption, blood–brain barrier permeability, and favorable drug-like properties for all compounds. In vitro PTP1B inhibition assays validated these findings, with Bergapten (IC<sub>50</sub> = 6.64 ± 0.23 μM) and Imperatorin (IC<sub>50</sub> = 9.44 ± 1.05 μM) exhibiting potent inhibition, comparable to the reference inhibitor ursolic acid (IC<sub>50</sub> = 7.43 ± 0.74 μM), whereas Xanthotoxol (IC<sub>50</sub> = 28.60 ± 1.88 μM) and Isopimpinellin (IC<sub>50</sub> = 25.48 ± 1.98 μM) showed significantly weaker inhibition. Enzyme kinetics revealed noncompetitive inhibition mechanisms, with <i>K</i><sub>i</sub> values of 6.73 μM and 8.44 μM for Bergapten and Imperatorin, respectively, suggesting allosteric binding. These results highlight Bergapten and Imperatorin as promising allosteric inhibitors of PTP1B, warranting further cell-based and preclinical investigations for potential therapeutic applications in metabolic disorders.</p>\n </div>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":"38 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Recognition","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmr.70006","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Protein Tyrosine Phosphatase 1B (PTP1B) is a key metabolic regulator and a promising therapeutic target for type 2 diabetes and obesity. This study evaluated the inhibitory potential of four coumarins—Bergapten, Imperatorin, Xanthotoxol, and Isopimpinellin, isolated from Ammi majus—through in silico and in vitro approaches. Molecular docking and molecular dynamics (MD) simulations identified Bergapten and Imperatorin as the most stable binders, forming key π–π stacking interactions with Phe280 and Phe196. Principal Energy Landscape (PEL) analysis further confirmed their stable binding conformations, while MM/PBSA calculations ranked Bergapten (−17.21 ± 0.80 kcal/mol) and Imperatorin (−12.76 ± 2.99 kcal/mol) as the strongest binders. ADMET analysis indicated high gastrointestinal absorption, blood–brain barrier permeability, and favorable drug-like properties for all compounds. In vitro PTP1B inhibition assays validated these findings, with Bergapten (IC50 = 6.64 ± 0.23 μM) and Imperatorin (IC50 = 9.44 ± 1.05 μM) exhibiting potent inhibition, comparable to the reference inhibitor ursolic acid (IC50 = 7.43 ± 0.74 μM), whereas Xanthotoxol (IC50 = 28.60 ± 1.88 μM) and Isopimpinellin (IC50 = 25.48 ± 1.98 μM) showed significantly weaker inhibition. Enzyme kinetics revealed noncompetitive inhibition mechanisms, with Ki values of 6.73 μM and 8.44 μM for Bergapten and Imperatorin, respectively, suggesting allosteric binding. These results highlight Bergapten and Imperatorin as promising allosteric inhibitors of PTP1B, warranting further cell-based and preclinical investigations for potential therapeutic applications in metabolic disorders.

基于香豆素的PTP1B变构抑制:代谢调节的潜在策略
蛋白酪氨酸磷酸酶1B (PTP1B)是一种关键的代谢调节因子,是治疗2型糖尿病和肥胖的有希望的治疗靶点。本研究通过计算机和体外方法评估了四种香豆素(bergapten, Imperatorin, Xanthotoxol,和Isopimpinellin)的抑制潜力,这些香豆素是从大鼠中分离出来的。分子对接和分子动力学(MD)模拟表明,Bergapten和Imperatorin是最稳定的结合剂,与Phe280和Phe196形成关键π -π堆叠相互作用。Principal Energy Landscape (PEL)分析进一步证实了它们稳定的结合构像,MM/PBSA计算显示Bergapten(- 17.21±0.80 kcal/mol)和Imperatorin(- 12.76±2.99 kcal/mol)是最强的结合构像。ADMET分析表明,所有化合物具有高胃肠道吸收,血脑屏障通透性和良好的药物样特性。体外对PTP1B的抑制实验证实了上述结果,伯格加藤(IC50 = 6.64±0.23 μM)和欧前胡素(IC50 = 9.44±1.05 μM)对PTP1B的抑制效果与参比抑制剂熊果酸(IC50 = 7.43±0.74 μM)相当,而黄腐酚(IC50 = 28.60±1.88 μM)和异opimpinellin (IC50 = 25.48±1.98 μM)对PTP1B的抑制效果较弱。酶动力学显示非竞争性抑制机制,Bergapten和Imperatorin的Ki值分别为6.73 μM和8.44 μM,表明是变构结合。这些结果强调了Bergapten和Imperatorin是有希望的PTP1B变张抑制剂,需要进一步的基于细胞和临床前的研究来治疗代谢紊乱的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Recognition
Journal of Molecular Recognition 生物-生化与分子生物学
CiteScore
4.60
自引率
3.70%
发文量
68
审稿时长
2.7 months
期刊介绍: Journal of Molecular Recognition (JMR) publishes original research papers and reviews describing substantial advances in our understanding of molecular recognition phenomena in life sciences, covering all aspects from biochemistry, molecular biology, medicine, and biophysics. The research may employ experimental, theoretical and/or computational approaches. The focus of the journal is on recognition phenomena involving biomolecules and their biological / biochemical partners rather than on the recognition of metal ions or inorganic compounds. Molecular recognition involves non-covalent specific interactions between two or more biological molecules, molecular aggregates, cellular modules or organelles, as exemplified by receptor-ligand, antigen-antibody, nucleic acid-protein, sugar-lectin, to mention just a few of the possible interactions. The journal invites manuscripts that aim to achieve a complete description of molecular recognition mechanisms between well-characterized biomolecules in terms of structure, dynamics and biological activity. Such studies may help the future development of new drugs and vaccines, although the experimental testing of new drugs and vaccines falls outside the scope of the journal. Manuscripts that describe the application of standard approaches and techniques to design or model new molecular entities or to describe interactions between biomolecules, but do not provide new insights into molecular recognition processes will not be considered. Similarly, manuscripts involving biomolecules uncharacterized at the sequence level (e.g. calf thymus DNA) will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信