Computationally Guided Structural Modification of Centaureidin: A Novel Approach for Enhancing Antioxidant and Antitumor Activities for Drug Development
Reem S. Alruhaimi, Emadeldin M. Kamel, Sulaiman M. Alnasser, Ibrahim Elbagory, Ayman M. Mahmoud, Al Mokhtar Lamsabhi
{"title":"Computationally Guided Structural Modification of Centaureidin: A Novel Approach for Enhancing Antioxidant and Antitumor Activities for Drug Development","authors":"Reem S. Alruhaimi, Emadeldin M. Kamel, Sulaiman M. Alnasser, Ibrahim Elbagory, Ayman M. Mahmoud, Al Mokhtar Lamsabhi","doi":"10.1111/cbdd.70149","DOIUrl":null,"url":null,"abstract":"<p>The development of novel therapeutic drugs with enhanced efficacy has gained significant attention in recent years. In this study, we aimed to enhance the radical scavenging and antitumor activities of centaureidin through computationally guided structural modifications. Centaureidin was initially isolated through extensive phytochemical fractionation from <i>Centaurea scoparia</i>. We employed Density Functional Theory (DFT) and multitarget molecular modeling to explore how modifying the carbon-8 (C-8) position influences bond dissociation enthalpies, radical scavenging mechanisms, and the structure-antitumor activity relationships. Guided by computational analysis, we then modified the core skeleton of centaureidin using a facile multicomponent Mannich-type synthesis, resulting in two newly substituted centaureidin analogues. The radical scavenging properties of centaureidin and its analogues CA1 and CA4 were investigated using DPPH and ABTS assays. CA1 and CA4 revealed more potent radical scavenging activities. In addition, both analogues were more effective in inhibiting the proliferation of the MCF-7 cancer cell line. All tested compounds exhibited binding affinity towards caspase-3 and the receptors EGFR, HER2 and VEGFR. In conclusion, structural modification of centaureidin resulted in enhanced antioxidant and cytotoxic activities. This comprehensive approach offers a streamlined and cost-effective pathway for drug design and development, providing valuable insights for researchers in the field of therapeutic drug production.</p>","PeriodicalId":143,"journal":{"name":"Chemical Biology & Drug Design","volume":"106 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cbdd.70149","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Biology & Drug Design","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.70149","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of novel therapeutic drugs with enhanced efficacy has gained significant attention in recent years. In this study, we aimed to enhance the radical scavenging and antitumor activities of centaureidin through computationally guided structural modifications. Centaureidin was initially isolated through extensive phytochemical fractionation from Centaurea scoparia. We employed Density Functional Theory (DFT) and multitarget molecular modeling to explore how modifying the carbon-8 (C-8) position influences bond dissociation enthalpies, radical scavenging mechanisms, and the structure-antitumor activity relationships. Guided by computational analysis, we then modified the core skeleton of centaureidin using a facile multicomponent Mannich-type synthesis, resulting in two newly substituted centaureidin analogues. The radical scavenging properties of centaureidin and its analogues CA1 and CA4 were investigated using DPPH and ABTS assays. CA1 and CA4 revealed more potent radical scavenging activities. In addition, both analogues were more effective in inhibiting the proliferation of the MCF-7 cancer cell line. All tested compounds exhibited binding affinity towards caspase-3 and the receptors EGFR, HER2 and VEGFR. In conclusion, structural modification of centaureidin resulted in enhanced antioxidant and cytotoxic activities. This comprehensive approach offers a streamlined and cost-effective pathway for drug design and development, providing valuable insights for researchers in the field of therapeutic drug production.
期刊介绍:
Chemical Biology & Drug Design is a peer-reviewed scientific journal that is dedicated to the advancement of innovative science, technology and medicine with a focus on the multidisciplinary fields of chemical biology and drug design. It is the aim of Chemical Biology & Drug Design to capture significant research and drug discovery that highlights new concepts, insight and new findings within the scope of chemical biology and drug design.