Mirjam Langeveld, Sandra Sirrs, Daphne H. Schoenmakers, Timothy Fazio, Melanie M. van der Klauw, Francois Maillot, Reena Sharma, Christel Tran, Athanasia Ziagaki, Fanny Mochel
{"title":"Screening for Life: Perspectives From Adult Metabolic Specialists on Newborn Screening for Inherited Metabolic Diseases","authors":"Mirjam Langeveld, Sandra Sirrs, Daphne H. Schoenmakers, Timothy Fazio, Melanie M. van der Klauw, Francois Maillot, Reena Sharma, Christel Tran, Athanasia Ziagaki, Fanny Mochel","doi":"10.1002/jimd.70057","DOIUrl":null,"url":null,"abstract":"<p>The number of inherited metabolic diseases (IMDs) in newborn screening (NBS) programs has increased significantly in the past decades. For some of the IMDs included in NBS (e.g., tyrosinemia type I), there are clear and substantial health benefits of NBS, while for others (e.g., very long chain acyl CoA dehydrogenase deficiency and 3-methylcrotonyl CoA carboxylase 1 deficiency), this is less clear as NBS identifies individuals who are asymptomatic or have milder forms of the disease. Therefore, knowledge of the full disease spectrum (including later onset forms) is needed when setting diagnostic metabolite cut-offs for NBS. Insights into the clinical, genetic and biochemical characteristics of different patient subsets can be used to redefine NBS protocols to identify patients with more severe forms of the disease who are most likely to benefit from identification in the newborn period. These insights require life-long monitoring of individuals identified based on symptoms versus those identified by NBS to determine long-term health outcomes and quantify the benefits of NBS. Adult metabolic specialists should be included in the development of NBS programs to provide data from this long-term monitoring and to contribute specific knowledge about later onset phenotypes of the IMDs included in NBS programs. The goal should be to develop NBS programs that identify newborns that benefit from early disease detection and treatment, without increasing psychological, social and management burden for individuals who may develop disease in adulthood with milder phenotype or potentially even not at all.</p>","PeriodicalId":16281,"journal":{"name":"Journal of Inherited Metabolic Disease","volume":"48 4","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jimd.70057","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inherited Metabolic Disease","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jimd.70057","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
The number of inherited metabolic diseases (IMDs) in newborn screening (NBS) programs has increased significantly in the past decades. For some of the IMDs included in NBS (e.g., tyrosinemia type I), there are clear and substantial health benefits of NBS, while for others (e.g., very long chain acyl CoA dehydrogenase deficiency and 3-methylcrotonyl CoA carboxylase 1 deficiency), this is less clear as NBS identifies individuals who are asymptomatic or have milder forms of the disease. Therefore, knowledge of the full disease spectrum (including later onset forms) is needed when setting diagnostic metabolite cut-offs for NBS. Insights into the clinical, genetic and biochemical characteristics of different patient subsets can be used to redefine NBS protocols to identify patients with more severe forms of the disease who are most likely to benefit from identification in the newborn period. These insights require life-long monitoring of individuals identified based on symptoms versus those identified by NBS to determine long-term health outcomes and quantify the benefits of NBS. Adult metabolic specialists should be included in the development of NBS programs to provide data from this long-term monitoring and to contribute specific knowledge about later onset phenotypes of the IMDs included in NBS programs. The goal should be to develop NBS programs that identify newborns that benefit from early disease detection and treatment, without increasing psychological, social and management burden for individuals who may develop disease in adulthood with milder phenotype or potentially even not at all.
期刊介绍:
The Journal of Inherited Metabolic Disease (JIMD) is the official journal of the Society for the Study of Inborn Errors of Metabolism (SSIEM). By enhancing communication between workers in the field throughout the world, the JIMD aims to improve the management and understanding of inherited metabolic disorders. It publishes results of original research and new or important observations pertaining to any aspect of inherited metabolic disease in humans and higher animals. This includes clinical (medical, dental and veterinary), biochemical, genetic (including cytogenetic, molecular and population genetic), experimental (including cell biological), methodological, theoretical, epidemiological, ethical and counselling aspects. The JIMD also reviews important new developments or controversial issues relating to metabolic disorders and publishes reviews and short reports arising from the Society''s annual symposia. A distinction is made between peer-reviewed scientific material that is selected because of its significance for other professionals in the field and non-peer- reviewed material that aims to be important, controversial, interesting or entertaining (“Extras”).