The effective phase space and e-folding of the Starobinsky and extended Starobinsky model of inflation

IF 6.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Theppawan Rukpakawong, Piyabut Burikham
{"title":"The effective phase space and e-folding of the Starobinsky and extended Starobinsky model of inflation","authors":"Theppawan Rukpakawong,&nbsp;Piyabut Burikham","doi":"10.1016/j.dark.2025.101998","DOIUrl":null,"url":null,"abstract":"<div><div>For zero spatial curvature, cosmological phase space of Starobinsky and extended Starobinsky inflationary model show three apparent attractors; the fixed angle attractor in the large field limit, the final attractor representing reheating phase in the small field region, and the apparent attractor corresponding to the slow-roll condition connecting between the large-field and small-field region. To consider the total <span><math><mi>e</mi></math></span>-folding likelihood of the model, Remmen–Carroll conserved measure is constructed and normalized. Using the measure, the total e-folding number <span><math><mi>N</mi></math></span> and its expectation value <span><math><mfenced><mrow><mi>N</mi></mrow></mfenced></math></span> are calculated. Our results show that most classical slow-roll trajectories which intersect the Planck surface have <span><math><mrow><mi>N</mi><mo>&lt;</mo><mn>60</mn></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>UV</mi></mrow></msub><mo>&gt;</mo><mn>5</mn><mo>.</mo><mn>5</mn><msubsup><mrow><mi>M</mi></mrow><mrow><mi>Pl</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span> is required for <span><math><mrow><mi>N</mi><mo>&gt;</mo><mn>60</mn></mrow></math></span>. It is found that for <span><math><mrow><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>UV</mi></mrow></msub><mo>∈</mo><mrow><mo>[</mo><mn>5</mn><mo>.</mo><mn>22</mn><mo>,</mo><mn>5</mn><mo>.</mo><mn>50</mn><mo>]</mo></mrow><msubsup><mrow><mi>M</mi></mrow><mrow><mi>Pl</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span> which satisfies the constraint on the spectral index, <span><math><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>9658</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0040</mn><mspace></mspace><mspace></mspace><mspace></mspace><mrow><mo>(</mo><mn>68</mn><mtext>%</mtext><mspace></mspace><mspace></mspace><mi>CL</mi><mo>)</mo></mrow></mrow></math></span>, the expectation value <span><math><mrow><mrow><mo>〈</mo><mi>N</mi><mo>〉</mo></mrow><mo>≃</mo><mn>3</mn><mo>.</mo><mn>5</mn><mo>−</mo><mn>4</mn></mrow></math></span> for trajectories intersecting the Planck surface in the Starobinsky model. For extended Starobinsky model with additional <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> term parametrized by a coupling parameter <span><math><mi>α</mi></math></span>, the expectation value when inflation starts from the top of the potential shifts to <span><math><mrow><mfenced><mrow><mi>N</mi></mrow></mfenced><mo>=</mo><mn>4</mn><mo>.</mo><mn>025</mn><mo>,</mo><mn>4</mn><mo>.</mo><mn>336</mn></mrow></math></span> for <span><math><mrow><mi>α</mi><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo>,</mo><mn>6</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow></math></span> respectively. In the Starobinsky model even at very large inflaton cutoff <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>UV</mi></mrow></msub></math></span> where the field value is super-Planckian, the energy density from the (saturating) inflaton potential and the Hubble parameter are still sub-Planckian and therefore the inflation occurs within the semi-classical regime.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"49 ","pages":"Article 101998"},"PeriodicalIF":6.4000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686425001918","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

For zero spatial curvature, cosmological phase space of Starobinsky and extended Starobinsky inflationary model show three apparent attractors; the fixed angle attractor in the large field limit, the final attractor representing reheating phase in the small field region, and the apparent attractor corresponding to the slow-roll condition connecting between the large-field and small-field region. To consider the total e-folding likelihood of the model, Remmen–Carroll conserved measure is constructed and normalized. Using the measure, the total e-folding number N and its expectation value N are calculated. Our results show that most classical slow-roll trajectories which intersect the Planck surface have N<60, and ϕUV>5.5MPl is required for N>60. It is found that for ϕUV[5.22,5.50]MPl which satisfies the constraint on the spectral index, ns=0.9658±0.0040(68%CL), the expectation value N3.54 for trajectories intersecting the Planck surface in the Starobinsky model. For extended Starobinsky model with additional R3 term parametrized by a coupling parameter α, the expectation value when inflation starts from the top of the potential shifts to N=4.025,4.336 for α=104,6.5×105 respectively. In the Starobinsky model even at very large inflaton cutoff ϕUV where the field value is super-Planckian, the energy density from the (saturating) inflaton potential and the Hubble parameter are still sub-Planckian and therefore the inflation occurs within the semi-classical regime.
Starobinsky和扩展的Starobinsky膨胀模型的有效相空间和电子折叠
当空间曲率为零时,Starobinsky宇宙相空间和扩展的Starobinsky膨胀模型显示出三个明显的吸引子;大场极限的定角吸引子,小场区域的终吸引子代表再加热阶段,视吸引子对应连接大场和小场区域的慢滚状态。为了考虑模型的总电子折叠可能性,构造了Remmen-Carroll守恒测度并进行了归一化。利用该测度,计算了总电子折叠数N及其期望值N。我们的结果表明,与普朗克表面相交的大多数经典慢滚轨迹具有N<;60,而对于N>;60,则需要ϕUV>;5.5MPl∗。在Starobinsky模型中,对于满足谱指数ns=0.9658±0.0040(68%CL)约束的ϕUV∈[5.22,5.50]MPl∗,与Planck曲面相交的轨迹的期望值< N >≃3.5−4。对于由耦合参数α参数化的附加R3项的扩展Starobinsky模型,当α=10−4,6.5×10−5时,暴胀从势的顶部开始时的期望值分别变为N=4.025,4.336。在Starobinsky模型中,即使在非常大的膨胀截止点(即场值为超普朗克的情况下),(饱和)膨胀势的能量密度和哈勃参数仍然是亚普朗克的,因此膨胀发生在半经典状态内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics of the Dark Universe
Physics of the Dark Universe ASTRONOMY & ASTROPHYSICS-
CiteScore
9.60
自引率
7.30%
发文量
118
审稿时长
61 days
期刊介绍: Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact. The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信