A centroid-based fine-tuning method for out-of-scope classification

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xinyi Cai , Pei-Wei Tsai , Youwen Zhang , Jiao Tian , Kai Zhang , Ke Yu , Hongwang Xiao , Jinjun Chen
{"title":"A centroid-based fine-tuning method for out-of-scope classification","authors":"Xinyi Cai ,&nbsp;Pei-Wei Tsai ,&nbsp;Youwen Zhang ,&nbsp;Jiao Tian ,&nbsp;Kai Zhang ,&nbsp;Ke Yu ,&nbsp;Hongwang Xiao ,&nbsp;Jinjun Chen","doi":"10.1016/j.neucom.2025.130828","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately detecting out-of-scope queries is a challenging task in task-oriented dialog systems. Most existing research focus on adding an outlier detector after classification or designing an open world classification to identify unknown intents. There is still a major performance gap on achieving high efficiency and accuracy based on above methods. In our research, we tend to solve this problem by constructing an out-of-scope class in the classification. We propose an explainable centroid-based fine-tuning method including a modified decision metric (MDM) and a centroid-based cosine loss (CCL) on Pre-trained Transformer models for optimization. This loss function builds on Copernican structure and assigns the same margin to each in-scope class to resolve an ambiguous configuration on out-of-scope detection. Moreover, cosine similarity is utilized to remove radial variations of centroids. Experimental results show that our proposed method achieves improvement compared to other baseline methods.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"650 ","pages":"Article 130828"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225015000","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately detecting out-of-scope queries is a challenging task in task-oriented dialog systems. Most existing research focus on adding an outlier detector after classification or designing an open world classification to identify unknown intents. There is still a major performance gap on achieving high efficiency and accuracy based on above methods. In our research, we tend to solve this problem by constructing an out-of-scope class in the classification. We propose an explainable centroid-based fine-tuning method including a modified decision metric (MDM) and a centroid-based cosine loss (CCL) on Pre-trained Transformer models for optimization. This loss function builds on Copernican structure and assigns the same margin to each in-scope class to resolve an ambiguous configuration on out-of-scope detection. Moreover, cosine similarity is utilized to remove radial variations of centroids. Experimental results show that our proposed method achieves improvement compared to other baseline methods.
一种基于质心的超范围分类微调方法
在面向任务的对话系统中,准确检测超出范围的查询是一项具有挑战性的任务。现有的研究大多集中在分类后加入离群值检测器或设计开放世界分类来识别未知意图。基于上述方法,在实现高效率和准确性方面仍存在较大的性能差距。在我们的研究中,我们倾向于通过在分类中构造一个作用域外的类来解决这个问题。我们提出了一种可解释的基于质心的微调方法,包括改进的决策度量(MDM)和基于质心的余弦损失(CCL)在预训练的Transformer模型上进行优化。该损失函数建立在哥白尼结构的基础上,并为每个作用域内类分配相同的余量,以解决作用域外检测时的模糊配置。此外,利用余弦相似度去除质心的径向变化。实验结果表明,与其他基线方法相比,本文提出的方法得到了改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信