Integration of electromechanical feedback in cardiac electrophysiology: A multiphysics approach using finite element analysis

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Chen Yang , Yidi Cao , Min Xiang
{"title":"Integration of electromechanical feedback in cardiac electrophysiology: A multiphysics approach using finite element analysis","authors":"Chen Yang ,&nbsp;Yidi Cao ,&nbsp;Min Xiang","doi":"10.1016/j.chaos.2025.116819","DOIUrl":null,"url":null,"abstract":"<div><div>Mathematical modeling of cardiac electrophysiology and mechanical feedback plays a critical role in computational medicine. Traditional electrophysiological models focus primarily on the electrical components of excitation-activated transmembrane ion currents. Additionally, electromechanical feedback modeling accounts for the effects of stretch-induced components. In this study, we introduce a novel modular finite element framework for coupled multiphysics cardiac electromechanical feedback modeling. The framework integrates the bidomain model with the Fitzhugh-Nagumo (FHN) model for electrophysiological modeling, and couples it with a dimensional mapping of stretch-induced ion currents. The resulting framework effectively simulates electrophysiological (EP) signal output, incorporating electromechanical feedback. After obtaining the fiber, sheet, and perpendicular to the sheet directions of the myocardium, cardiac mechanical contraction is simulated by additive decomposition of the active stress, varying along these three directions by different percentages in accordance with the changes in transmembrane potential. We performed numerical simulations on realistic atrial-torso and ventricular-torso geometries. By comparing the results of standard 12‑lead electrocardiogram (ECG) and body surface potential maps (BSPMs), it is evident that the impact of cardiac electromechanical modeling on EP output should not be overlooked.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116819"},"PeriodicalIF":5.6000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096007792500832X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Mathematical modeling of cardiac electrophysiology and mechanical feedback plays a critical role in computational medicine. Traditional electrophysiological models focus primarily on the electrical components of excitation-activated transmembrane ion currents. Additionally, electromechanical feedback modeling accounts for the effects of stretch-induced components. In this study, we introduce a novel modular finite element framework for coupled multiphysics cardiac electromechanical feedback modeling. The framework integrates the bidomain model with the Fitzhugh-Nagumo (FHN) model for electrophysiological modeling, and couples it with a dimensional mapping of stretch-induced ion currents. The resulting framework effectively simulates electrophysiological (EP) signal output, incorporating electromechanical feedback. After obtaining the fiber, sheet, and perpendicular to the sheet directions of the myocardium, cardiac mechanical contraction is simulated by additive decomposition of the active stress, varying along these three directions by different percentages in accordance with the changes in transmembrane potential. We performed numerical simulations on realistic atrial-torso and ventricular-torso geometries. By comparing the results of standard 12‑lead electrocardiogram (ECG) and body surface potential maps (BSPMs), it is evident that the impact of cardiac electromechanical modeling on EP output should not be overlooked.
机电反馈在心脏电生理中的集成:一种使用有限元分析的多物理场方法
心脏电生理和机械反馈的数学建模在计算医学中起着至关重要的作用。传统的电生理模型主要关注刺激激活的跨膜离子电流的电成分。此外,机电反馈建模考虑了拉伸诱导组件的影响。在这项研究中,我们引入了一种新的模块化有限元框架,用于耦合多物理场心脏机电反馈建模。该框架将双域模型与Fitzhugh-Nagumo (FHN)模型集成到电生理建模中,并将其与拉伸诱导离子电流的维度映射耦合在一起。所得到的框架有效地模拟了电生理(EP)信号输出,并结合了机电反馈。在获得纤维、薄片和垂直于薄片的心肌方向后,根据跨膜电位的变化,通过活性应力的加性分解模拟心脏机械收缩,活性应力沿这三个方向以不同百分比变化。我们对真实的心房-躯干和心室-躯干几何形状进行了数值模拟。通过比较标准12导联心电图(ECG)和体表电位图(BSPMs)的结果,很明显,心脏机电建模对EP输出的影响不容忽视。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信