Strain-rate sensitivity deformation behavior of high entropy alloy fibers

IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Yan Ma , Weiming Yang , Lichen Liu , Meng Fang , Aina He , Yaqiang Dong , Qikui Man , Haishun Liu , Jiawei Li
{"title":"Strain-rate sensitivity deformation behavior of high entropy alloy fibers","authors":"Yan Ma ,&nbsp;Weiming Yang ,&nbsp;Lichen Liu ,&nbsp;Meng Fang ,&nbsp;Aina He ,&nbsp;Yaqiang Dong ,&nbsp;Qikui Man ,&nbsp;Haishun Liu ,&nbsp;Jiawei Li","doi":"10.1016/j.intermet.2025.108908","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding strain rate sensitivity in high-entropy alloys (HEAs) is critical for applications in engines, motors, and microelectronics. Current research focuses on bulk HEAs at millimeter scales, leaving μm-scale behavior poorly understood. This study investigates Fe<sub>34</sub>Co<sub>29</sub>Ni<sub>29</sub>Al<sub>3</sub>Ta<sub>3</sub>Si<sub>2</sub> HEA fibers with single-phase coarse-grained structures under varying tensile strain rates. Results demonstrate a 25 % increase in tensile strength and 18 % enhancement in elongation as the strain rate rises from 1 × 10<sup>−3</sup> to 5 × 10<sup>−1</sup> s<sup>−1</sup>. Deformation mechanisms transition from stacking faults, nano-grains, and L-C locks at lower rates to dislocation-dominated plasticity at higher rates driven by low stacking fault energy (∼26.15 mJ/m<sup>2</sup>). By integrating microstructural characterization with the Nemat-Nasser Li (NNL) model, we quantify the strain rate sensitivity parameter (from 0.005 to 0.03), activation volume and validate the dominance of dislocation slip at high strain rates. These findings bridge the knowledge gap in microscale HEA deformation, offering a predictive framework for engineering applications.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"185 ","pages":"Article 108908"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979525002730","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding strain rate sensitivity in high-entropy alloys (HEAs) is critical for applications in engines, motors, and microelectronics. Current research focuses on bulk HEAs at millimeter scales, leaving μm-scale behavior poorly understood. This study investigates Fe34Co29Ni29Al3Ta3Si2 HEA fibers with single-phase coarse-grained structures under varying tensile strain rates. Results demonstrate a 25 % increase in tensile strength and 18 % enhancement in elongation as the strain rate rises from 1 × 10−3 to 5 × 10−1 s−1. Deformation mechanisms transition from stacking faults, nano-grains, and L-C locks at lower rates to dislocation-dominated plasticity at higher rates driven by low stacking fault energy (∼26.15 mJ/m2). By integrating microstructural characterization with the Nemat-Nasser Li (NNL) model, we quantify the strain rate sensitivity parameter (from 0.005 to 0.03), activation volume and validate the dominance of dislocation slip at high strain rates. These findings bridge the knowledge gap in microscale HEA deformation, offering a predictive framework for engineering applications.
高熵合金纤维的应变率敏感变形行为
了解高熵合金(HEAs)的应变率敏感性对于发动机,电机和微电子的应用至关重要。目前的研究主要集中在毫米尺度的大块HEAs,对μm尺度的行为知之甚少。本文研究了不同拉伸应变速率下具有单相粗晶结构的Fe34Co29Ni29Al3Ta3Si2 HEA纤维。结果表明,当应变速率从1 × 10−3增加到5 × 10−1 s−1时,拉伸强度提高25%,伸长率提高18%。变形机制从较低速率的层错、纳米颗粒和L-C锁转变为由较低的层错能(~ 26.15 mJ/m2)驱动的较高速率的位错主导的塑性。通过将微观结构表征与Nemat-Nasser Li (NNL)模型相结合,我们量化了应变率敏感性参数(从0.005到0.03)和激活体积,并验证了位错滑移在高应变率下的主导作用。这些发现弥补了微尺度HEA变形的知识差距,为工程应用提供了预测框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intermetallics
Intermetallics 工程技术-材料科学:综合
CiteScore
7.80
自引率
9.10%
发文量
291
审稿时长
37 days
期刊介绍: This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys. The journal reports the science and engineering of metallic materials in the following aspects: Theories and experiments which address the relationship between property and structure in all length scales. Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations. Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties. Technological applications resulting from the understanding of property-structure relationship in materials. Novel and cutting-edge results warranting rapid communication. The journal also publishes special issues on selected topics and overviews by invitation only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信