Krijn K. Dijkstra, Roberto Vendramin, Despoina Karagianni, Maartje Witsen, Felipe Gálvez-Cancino, Mark S. Hill, Kane A. Foster, Vittorio Barbè, Mihaela Angelova, Robert E. Hynds, David R. Pearce, Carlos Martínez-Ruiz, James R.M. Black, Ariana Huebner, Oriol Pich, Andrew Rowan, Marcellus Augustine, Clare Puttick, David A. Moore, Lydia L. Liu, Charles Swanton
{"title":"Subclonal immune evasion in non-small cell lung cancer","authors":"Krijn K. Dijkstra, Roberto Vendramin, Despoina Karagianni, Maartje Witsen, Felipe Gálvez-Cancino, Mark S. Hill, Kane A. Foster, Vittorio Barbè, Mihaela Angelova, Robert E. Hynds, David R. Pearce, Carlos Martínez-Ruiz, James R.M. Black, Ariana Huebner, Oriol Pich, Andrew Rowan, Marcellus Augustine, Clare Puttick, David A. Moore, Lydia L. Liu, Charles Swanton","doi":"10.1016/j.ccell.2025.06.012","DOIUrl":null,"url":null,"abstract":"Cancers rarely respond completely to immunotherapy. While tumors consist of multiple genetically distinct clones, whether this affects the potential for immune escape remains unclear due to an inability to isolate and propagate individual subclones from human cancers. Here, we leverage the multi-region TRACERx lung cancer evolution study to generate a patient-derived organoid – T cell co-culture platform that allows the functional analysis of subclonal immune escape at single clone resolution. We establish organoid lines from 11 separate tumor regions from three patients, followed by isolation of 81 individual clonal sublines. Co-culture with tumor infiltrating lymphocytes (TIL) or natural killer (NK) cells reveals cancer-intrinsic and subclonal immune escape in all 3 patients. Immune evading subclones represent genetically distinct lineages with a unique evolutionary history. This indicates that immune evading and non-evading subclones can be isolated from the same tumor, suggesting that subclonal tumor evolution directly affects immune escape.","PeriodicalId":9670,"journal":{"name":"Cancer Cell","volume":"7 1","pages":""},"PeriodicalIF":48.8000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ccell.2025.06.012","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancers rarely respond completely to immunotherapy. While tumors consist of multiple genetically distinct clones, whether this affects the potential for immune escape remains unclear due to an inability to isolate and propagate individual subclones from human cancers. Here, we leverage the multi-region TRACERx lung cancer evolution study to generate a patient-derived organoid – T cell co-culture platform that allows the functional analysis of subclonal immune escape at single clone resolution. We establish organoid lines from 11 separate tumor regions from three patients, followed by isolation of 81 individual clonal sublines. Co-culture with tumor infiltrating lymphocytes (TIL) or natural killer (NK) cells reveals cancer-intrinsic and subclonal immune escape in all 3 patients. Immune evading subclones represent genetically distinct lineages with a unique evolutionary history. This indicates that immune evading and non-evading subclones can be isolated from the same tumor, suggesting that subclonal tumor evolution directly affects immune escape.
期刊介绍:
Cancer Cell is a journal that focuses on promoting major advances in cancer research and oncology. The primary criteria for considering manuscripts are as follows:
Major advances: Manuscripts should provide significant advancements in answering important questions related to naturally occurring cancers.
Translational research: The journal welcomes translational research, which involves the application of basic scientific findings to human health and clinical practice.
Clinical investigations: Cancer Cell is interested in publishing clinical investigations that contribute to establishing new paradigms in the treatment, diagnosis, or prevention of cancers.
Insights into cancer biology: The journal values clinical investigations that provide important insights into cancer biology beyond what has been revealed by preclinical studies.
Mechanism-based proof-of-principle studies: Cancer Cell encourages the publication of mechanism-based proof-of-principle clinical studies, which demonstrate the feasibility of a specific therapeutic approach or diagnostic test.