A three-tier AI solution for equitable glaucoma diagnosis across China’s hierarchical healthcare system

IF 15.1 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Yi Zhou, Haitao Nie, Xinyu Gong, Minhui Dai, Zhaohong Guo, Xiaoling Deng, Mengyang Li, Yong Liu, Lingyu Sun, Xiangyi Tang, Ling Zhou, Zhiyao Tang, Ziqing Xia, Lemeng Feng, Wulong Zhang, Qingqing Yi, Xiaobo Xia, Bin Xie, Weitao Song
{"title":"A three-tier AI solution for equitable glaucoma diagnosis across China’s hierarchical healthcare system","authors":"Yi Zhou, Haitao Nie, Xinyu Gong, Minhui Dai, Zhaohong Guo, Xiaoling Deng, Mengyang Li, Yong Liu, Lingyu Sun, Xiangyi Tang, Ling Zhou, Zhiyao Tang, Ziqing Xia, Lemeng Feng, Wulong Zhang, Qingqing Yi, Xiaobo Xia, Bin Xie, Weitao Song","doi":"10.1038/s41746-025-01835-4","DOIUrl":null,"url":null,"abstract":"<p>Artificial intelligence (AI) offers a solution to glaucoma care inequities driven by uneven resource distribution, but its real-world implementation remains limited. Here, we introduce Multi-Glau, an three-tier AI system tailored to China’s hierarchical healthcare system to promote health equity in glaucoma care, even in settings with limited equipment. The system comprises three modules: (1) a screening module for primary hospitals that eliminates reliance on imaging; (2) a pre-diagnosis module for handling incomplete data in secondary hospitals, and (3) a definitive diagnosis module for the precise diagnosis of glaucoma severity in tertiary hospitals. Multi-Glau achieved high performance (AUC: 0.9254 for screening, 0.8650 for pre-diagnosis, and 0.9516 for definitive diagnosis), with its generalizability confirmed through multicenter validation. Multi-Glau outperformed state-of-the-art models, particularly in handling missing data and providing precise glaucoma severity diagnosis, while improving ophthalmologists’ performance. These results demonstrate Multi-Glau’s potential to bridge diagnostic gaps across hospital tiers and enhance equitable healthcare access.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"121 1","pages":""},"PeriodicalIF":15.1000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01835-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) offers a solution to glaucoma care inequities driven by uneven resource distribution, but its real-world implementation remains limited. Here, we introduce Multi-Glau, an three-tier AI system tailored to China’s hierarchical healthcare system to promote health equity in glaucoma care, even in settings with limited equipment. The system comprises three modules: (1) a screening module for primary hospitals that eliminates reliance on imaging; (2) a pre-diagnosis module for handling incomplete data in secondary hospitals, and (3) a definitive diagnosis module for the precise diagnosis of glaucoma severity in tertiary hospitals. Multi-Glau achieved high performance (AUC: 0.9254 for screening, 0.8650 for pre-diagnosis, and 0.9516 for definitive diagnosis), with its generalizability confirmed through multicenter validation. Multi-Glau outperformed state-of-the-art models, particularly in handling missing data and providing precise glaucoma severity diagnosis, while improving ophthalmologists’ performance. These results demonstrate Multi-Glau’s potential to bridge diagnostic gaps across hospital tiers and enhance equitable healthcare access.

Abstract Image

中国三级医疗体系青光眼公平诊断的三级人工智能解决方案
人工智能(AI)为解决资源分配不均导致的青光眼护理不公平提供了一种解决方案,但其在现实世界中的应用仍然有限。在这里,我们介绍Multi-Glau,这是一个为中国分层医疗保健系统量身定制的三层人工智能系统,旨在促进青光眼护理中的健康公平,即使在设备有限的环境中也是如此。该系统包括三个模块:(1)基层医院筛查模块,消除对影像的依赖;(2)二级医院的预诊断模块,用于处理不完整的数据;(3)三级医院的明确诊断模块,用于青光眼严重程度的精确诊断。通过多中心验证,multiglau在筛查、预诊断和明确诊断方面的AUC分别为0.9254、0.8650和0.9516,具有较高的效能。Multi-Glau优于最先进的模型,特别是在处理缺失数据和提供精确的青光眼严重程度诊断方面,同时提高了眼科医生的表现。这些结果表明,Multi-Glau在弥合各级医院之间的诊断差距和提高公平的医疗保健机会方面具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信