Sulfur Mediated Interfacial Proton-Directed Transfer Boosts Electrocatalytic Nitric Oxide Reduction to Ammonia over Dual-Site Catalysts.

Zhenlin Wang, Haiyan Duan, Wenqiang Qu, Donglin Han, Xingchi Li, Li Zhu, Xuan Jiang, Danhong Cheng, Yongjie Shen, Ming Xie, Emiliano Cortes, Dengsong Zhang
{"title":"Sulfur Mediated Interfacial Proton-Directed Transfer Boosts Electrocatalytic Nitric Oxide Reduction to Ammonia over Dual-Site Catalysts.","authors":"Zhenlin Wang, Haiyan Duan, Wenqiang Qu, Donglin Han, Xingchi Li, Li Zhu, Xuan Jiang, Danhong Cheng, Yongjie Shen, Ming Xie, Emiliano Cortes, Dengsong Zhang","doi":"10.1002/anie.202511398","DOIUrl":null,"url":null,"abstract":"<p><p>Electrocatalytic nitric oxide reduction reaction (NORR) for ammonia (NH<sub>3</sub>) synthesis represents a sustainable strategy that simultaneously realizes the nitrogen cycle and resource integration. The key issue hindering the NORR efficiency is accelerating proton (*H) transfer to facilitate NO hydrogenation while inhibiting the hydrogen evolution reaction (HER). Herein, we demonstrate an interface-engineered sulfur-mediated Cu@Co electrocatalyst (S-Cu@Co/C) that boosts NORR performance through dual modulation of electronic structure and proton transfer on active sites. A comprehensive program of experimental and theoretical calculations was employed to discover that sulfur incorporation induces electron redistribution in the Cu-Co interface, creating electron-rich sulfur and electron-deficient metals. This electronic configuration synergistically enhances NO adsorption on Cu sites and promotes water dissociation on Co sites. More critically, sulfur could direct the rapid transfer of *H from Co to Cu sites, thereby accelerating the NO hydrogenation and suppressing HER. Consequently, S-Cu@Co/C achieves an NH<sub>3</sub> yield rate of 655.3 µmol h<sup>-1</sup> cm<sup>-2</sup> in a flow cell and a Faradaic efficiency of 92.4% in an H-cell. Remarkably, the catalyst could maintain continuous electrolysis tests and steady NH<sub>3</sub> yield up to 100 h. This work provides innovative insights into the fabrication of efficient electrocatalysts via heteroatom-mediated interfacial engineering strategies.</p>","PeriodicalId":520556,"journal":{"name":"Angewandte Chemie (International ed. in English)","volume":" ","pages":"e202511398"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (International ed. in English)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/anie.202511398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic nitric oxide reduction reaction (NORR) for ammonia (NH3) synthesis represents a sustainable strategy that simultaneously realizes the nitrogen cycle and resource integration. The key issue hindering the NORR efficiency is accelerating proton (*H) transfer to facilitate NO hydrogenation while inhibiting the hydrogen evolution reaction (HER). Herein, we demonstrate an interface-engineered sulfur-mediated Cu@Co electrocatalyst (S-Cu@Co/C) that boosts NORR performance through dual modulation of electronic structure and proton transfer on active sites. A comprehensive program of experimental and theoretical calculations was employed to discover that sulfur incorporation induces electron redistribution in the Cu-Co interface, creating electron-rich sulfur and electron-deficient metals. This electronic configuration synergistically enhances NO adsorption on Cu sites and promotes water dissociation on Co sites. More critically, sulfur could direct the rapid transfer of *H from Co to Cu sites, thereby accelerating the NO hydrogenation and suppressing HER. Consequently, S-Cu@Co/C achieves an NH3 yield rate of 655.3 µmol h-1 cm-2 in a flow cell and a Faradaic efficiency of 92.4% in an H-cell. Remarkably, the catalyst could maintain continuous electrolysis tests and steady NH3 yield up to 100 h. This work provides innovative insights into the fabrication of efficient electrocatalysts via heteroatom-mediated interfacial engineering strategies.

硫介导的界面质子定向转移在双位点催化剂上促进电催化一氧化氮还原为氨。
电催化氧化氮还原反应(NORR)合成氨(NH3)是一种同时实现氮循环和资源整合的可持续策略。阻碍NORR效率的关键问题是加速质子(*H)转移以促进NO加氢,同时抑制析氢反应(HER)。在此,我们展示了一种界面工程硫介导的Cu@Co电催化剂(S-Cu@Co/C),通过双重调制电子结构和活性位点上的质子转移来提高NORR性能。综合实验和理论计算发现,硫的掺入诱导Cu-Co界面中的电子重分布,产生富电子硫和缺电子金属。这种电子构型协同增强了NO在Cu位点上的吸附,并促进了水在Co位点上的解离。更重要的是,硫可以引导*H从Co位点快速转移到Cu位点,从而加速NO加氢并抑制HER。因此,S-Cu@Co/C在流动电池中的NH3产率为655.3 μmol h-1 cm-2,在h电池中的法拉第效率为92.4%。值得注意的是,该催化剂可以保持连续的电解测试和稳定的NH3产率长达100小时。这项工作为通过杂原子介导的界面工程策略制造高效电催化剂提供了创新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信